Code: 1204

DEC 2024 EXAMINATION B.TECH EXAM MA 10011:-MATHEMATICS-I

Timo: 3 Hrs.]

[Max. Marks: 70

TOTAL NO. OF QUESTIONS IN THIS PAPER:5

Note: Attempt all questions. All questions carry equal marks. Each question carries five subparts a, b, c, d and c. Parts a, b and c are compulsory and attempt any one from d and c.

S. No		Questions	Marks	CO	BL	PI
Q.1	(0)		(02)	CO1	1	1.1.1
_	(b)	If $x = rcos\theta$, $y = rsin\theta$, then evaluate $\frac{\partial(x,y)}{\partial(r,\theta)}$	(02)	CO1	2	1.1.1
au consultant e de me	(c)	If $u = x^2 + y^2$ where $x = at^2, y = 2at$, find $\frac{du}{dt}$.	(03)	CO1	2	1.1.1
	(d)	Using Maclaurin series show that $e^{x\cos x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots$ OR	(07)	CO1	3	1.1.2
	1	OR				
	(e)	If $u = sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$ Prove that	(07)	CO1	3	1.1.2
		(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} tanu$.				
		(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin u \cdot \cos 2u}{4\cos^3 u}$.				
Q.2	(a)	Find the radius of curvature at any point (s, φ) of the curve	(02)	CO2	2	1.1.1
		$s = c \tan \varphi$	(02)	CO2	2	1.1.1
	(b)	Find the radius of curvature at (0,0) for the curve $y = x^3 + 5x^2 + 6x$.	(02)	002	-	
	(c)	Explain the Lagrange method of undetermined multipliers to fine maximum or minimum value of function of three or more variables.	(03)	CO2	1	1.1.2
	(d)	A rectangular box open at the top is to have a given capacity. Find the dimensions of the box requiring least material for its construction.	(07)	CO2	4	1.1.2
		OR	40.00	000	0	44
	(e)	Find the asymptotes of the curve $y^3 - x^2y - 2xy^2 + 2x^3 - 7xy + 3y^2 + 2x^2 + 2x + 2y + 1 = 0$	(07)	CO2	2	1.1.1
. 3	(a)	Evaluate $\Gamma\left(-\frac{3}{2}\right)$	(02)	CO3	2	1.1.

1

	(b)	Evaluate $\int_{0}^{\infty} e^{-2}$	$x^3 dx$								(02)	CO3	2	1.1.1
-:``	(c)	Show that $\beta(m,n)=\beta(m+1,n)+\beta(m,n+1)$.									(03)	CO3	2	1.1.1
	(d)	Change the order of integration and evaluate $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{xdydx}{\sqrt{x^2+y^2}}$										CO3	3	1.1.2
		OR												
	(e)	Evaluate $\iint r^2$ $r = a\sin\theta$ and				rea bet	ween	the circl	(07)	CO3	3	1.1.1		
Q.4	(a)	Find the symmetricity of the curve $ay^2 = x^2(a - x)$										CO4	2	1.1.1
	(b)	Find point of intersection with coordinate-axis for the curve $a^2y^2 = x^2(2a - x)(x - a)$									(02)	CO4	2	1.1.1
	(c)	Find the area between the cubic $y = x^3$ & the parabola $y = 4x^2$.								$=4x^{2}$.	(03)	CO4	3	1.1.1
	(d)	Find the surface area of the solid formed by the revolution arc of the parbola $y^2 = 4ax$ bounded by its latus rectum about the x-axis.									(07)	CO4	3	1.1.2
	+	OR												
	(e)	Trace the cur	Trace the curve $r = acos2\theta$								(07)	CO4	2	1.1.1
2.5	(a)	Write a short r	note on	corre	elation	1. ,					(02)	CO5	1	1.1.1
3	(b)	Find the harmo	Find the harmonic mean of 4, 8, 16, 32.					7	(02)	CO5	2	1.1.1		
-	(c)	Find the mode of the following: Marks							×	(03)	CO5	2	1.1.2	
	(d)										(07)	CO5	3	1.1.
		data								4				
		У	0 -4	-	1	4		11	2	20				
		OR												
	(e)	Calculate the coefficient of correlation between the marks obtained by 8 students in mathematics and statistics						(07)	COS	5 4	1.1.			
		Students A B C D E F G H							H					
		Mathematics 25 30 32 35 37 40 42 45						45						
		Statistics	08	10	15	17	20	23	24	25				