

PRESENTED BY

Dr. Rajesh Khatri (Associate Professor)

- What is VLSI?
 - Very Large-Scale Integration
 - Integration of gates or transistors?
- SSI Small Scale Integration (0-10²)
- MSI Medium Scale Integration (10²-10³)
- LSI Large Scale Integration (10³-10⁵)
- VLSI Very Large-Scale Integration (>=10⁷)

➤ Moore's Law

- ➤ How to integrate millions and billions transistor?
- > Solution-

EDA Tools / CAD Tools

Electronic Design Automation Tools

- > Cadence
- > Synopsys
- ➤ Mentor Graphics (Siemens)

> Front end and Back end

Front end: initial conceptualization, system level description, architecture level, RTL coding

➤ Back end: Physical implementation, floor planning placement and routing

• Chip Design Flow

Schematic editor & Ckt Simulator - Spice

Layout editor, Design rule check (DRC)

Layout Vs Schematic (LVS), Spice for post layout simulation

Device Models (Model file)

Technology file, extraction file

Technology file, Device Models

Chip Design Flow

Model File:

• Technology File: The technology file provides information on various aspects, including layer definitions, design rules, spacing requirements, wire widths, and other parameters that guide the layout of the integrated circuit.

• PDK (Process Design Kit): It's a set of libraries and associated data (model files, physical verification rule files, control files for various tools) to allow you to design in a particular technology.

• PDK's: Vendors – gpdk- Generic PDK

SCL (Semi-conductor Laboratory)

UMC – (United Microelectronics Corporation)

TSMC – (Taiwan Semiconductor Manufacturing Company)

Tower Semiconductor

Global Foundries

SMIC – (Semiconductor Manufacturing International Corporation)

Revenue Share of Key Players in Global Semiconductor Foundry Industry, Q4 2023

✓ CMOS Inverter and Stick Diagram

- Layout Design Rules
 - Lambed Based Design Rules
 - Micron based Design Rules

- Lambed Based Design Rules
 - Expressed in terms of a scaling parameter: Lambda (λ)
 - Minimum line width: 2λ
 - Main disadvantages:
 - Limited linear scaling
 - Too conservative

- Micron Based Design Rules
 - Express designs in absolute dimensions
 - Pro: Allow taking full advantage of technology
 - Con: Scaling and Porting becomes more complicated

- (1) Rules for N-well as shown in Figure below.
 - Width 3µ
 - Space 9µ

- 2) Rules for active area as shown in Figure below
 - -1. Minimum size = 3μ
 - -2. Minimum spacing = 3μ
 - -2. N+ active to N-well = 7μ

- (3) Rules for poly 1 as shown in Figure below.
 - 1. Width = 2μ
 - 2. Spacing = 3μ
 - 3. Gate overlap of active = 2μ
 - 4. Field poly 1 to active = 1μ

- 4) Rules for contact to Poly as shown in Figure below
 - -1. Exact contact size = $2\mu \times 2\mu$
 - -2. Minimum Poly overlap = 1μ
 - -3. Minimum contact spacing = 2μ

- (5) Rules for contact to Active as shown in Figure below.
 - 1. Exact contact size = $2\mu \times 2\mu$
 - 2. Minimum active overlap = 1μ
 - 3. Minimum contact spacing= 2µ
 - 4. Minimum spacing to gate= 2μ

- 6) Rules for Metal 1 as shown in Figure below
 - -1. Width = 3μ
 - -2. Spacing = 3μ
 - -3. Overlap of contact = 1μ

- (7) Rules for Metal 2 as shown in Figure below.
 - 1. Width = 3μ
 - 2. Spacing = 3μ
 - 3. Overlap of contact = 1μ

√ Full Adder

√ Full Adder Layout

THANK YOU