Semester -A

IP 33005: METROLOGY AND INDUSTRIAL INSPECTION

UNIT	NO OF	TOPICS COVERED
NO.	LECTURES 1	
	1	Importance of Industrial inspection & History of Metrology
		Measurement terminology, Standards & Units.
	1	Types of standards & different between line & end standards
(Unit I)	1	Slip gauges definition, accuracy, wringing, set & manufacturing
,	1	Wavelength standards & its importance & uses.
	1	Working standards for length
	1	Angle measurement – Definition, instruments, Sine bar
	1	Angle gauges & dividing head.
	1	Principle of measuring instrument for linear/direct measuring tools.
	1	Comparators their design type construction advantages and disadvantages.
	1	Projectors and tool maker microscope, clinometers.
(Unit II)	1	Definition concept & measurement of straightness, flatness, Parallelism, Perpendicularity.
	1	Roundness, cylinderecity& squareness.
	1	Interferometry and its applications.
	1	Use & application of automated inspection.
	1	Measurement and representation of geometrical features
	1	Introduction & factors affecting surface roughness.
	1	Surface texture controlling regions, order of irregularities. Element of surface
	1	texture and measurement.
	1	E & M systems for datum, surface roughness for various processes.
(Unit	1	Screw thread measurement.
III)	1	Element of screw, errors in screw thread &their measurement
,	1	Inspection of gears, Gear terminology
	1	Types of gear, Elements of gear & methods of measuring gear tooth thickness
	1	Measurement of gear base pitch, effective diameter & profile
	1	Interchangeability concept and its importance.
	1	Limits fits & tolerances &their classifications.
	1	System of limit fit & tolerances, selective assembly & matched fit & condition
	1	for success.
(Unit	1	Engineering standards (BS, ISO & IS systems).
IV)	1	Limit & fit systems, Geometric tolerance.
	1	Limit gauge their type & manufacturing.
	1	Taylor's principle of gauge design.
	1	In process inspection & control.
	1	Role of manufacturing analysis.
	1	Pre & Post production analysis.
(Unit V)	2	Process planning steps, Post print analysis.
		Principle processes & blank making process.
	1	Functional surface & machining allowances.
	2	Work piece control First lecture, Work piece control Second lecture.
	1	Influence of process Engineering on product design
Total	40	

Semester-A IP 33002: INDUSTRIAL ENGINEERING

SLOT	NO OF	TOPICS COVERED
S. NO.	LECTURES	
(Unit	1	Place of Industrial Engineering in business and industry.
	1	History of Industrial Engineering Definition of Industrial Engineering.
	1	Introduction concept and definition of productivity. its relation with standard of living.
I)	1	Partial, Total and total factor productivity. Factors influencing productivity. Productivity Models.
	1	Concept of work content, excess work content and in effective time.
	1	Reaching close to basic work content and improvement of productivity.
	1	Introduction and scope of method study.
	1	Recording Techniques: Symbols used in charts, flow diagram, outline process chart, and Man machine chart.
	1	Flow process charts: Man, material and equipment type. Examples. Multiple activities chart.
	1	String Diagram and two-handed process chart. Method improvement
(Unit	1	Therbiligs and their use in SIMO chart. Example of SIMO chart.
II)	1	Principles of motion economy as related to use of human body, arrangement of work place and design of tools and equipments.
	1	Micro motion study, cycle graph and chrono cycle graph. Memo motion study.
	1	Critical examination. Primary and secondary questions. Their use in development of new method. Installation
	1	and maintenance of improved methods.
	1	Definition, objectives and uses of work measurement. Overview of techniques of work measurement.
	1	Time study procedure equipment and steps. Breaking the job into elements. Types of elements.
	1	Concept of qualified worker and rating. Various types of rating. Factors affecting performance rating.
	1	Various types of allowances and computation of standard time,
(Unit	1	Work sampling. Determination of sample size and standard time using work sampling.
III)	1	Advantages and disadvantages of work sampling. Numericals
	1	Use of standard data for determination of standard time, PMTS, its types and various factors considered while using PMTS, advantages.
	1	MTM, its use and conventions for recording MTM data. MTM versions. Introduction to MOST.
	1	Job evaluation procedure, objectives and definition. Job analysis, job description and specification.
	1	Job evaluation systems and merit rating.
	1	Measured day work: Definition, general concepts, duties and responsibilities of workers, supervisors and engineers.
	1	Establishing standards and reporting performance. Operating principles and advantages of Measured day work.
	1	Incentives: Definition and classification. Objectives of incentive scheme. Compassion of individual and group incentives. Steps to install an incentive scheme.
	1	Pre-requisites of a company's wage incentive plan. Characteristics of a good wage incentive plan.
(Unit	1	Straight piece rate methods. Their characteristics advantages and disadvantages.
IV)		Differential piece rate methods. Taylor's differential piece rate system. Advantages and disadvantages.
	1	Merrick's differential piece rate system.
	1	Time and piece rate methods. Gnatt task and bonus scheme. Earnings under the method. An illustration of scheme.
	1	Efficiency based plans. Emerson's efficiency plan,
	1	Premium bonus schemes. Their advantages to the management. The Halsey system.
	1	The Rowan system: Its advantages characteristics maximum bonus earned. Its disadvantages. Illustration.
-	1	The Bedaux Point System. Characteristics and illustration. Merits and suitability of scheme.
	1	Introduction: Ergonomics as a multi-disciplinary field, its components.
	1	Importance of ergonomics in equipment and work design.
(Unit V)	1	Concept of man-machine system;
	1	Types and characteristics of Man-machine systems.
	1	Solving of assignment problems. Review of syllabus and solution of difficulties.
Total	40	Solving of assignment problems. Neview of syndous and solution of difficulties.
1 Otal	40	I.

Semester – A

IP33703: METAL CASTING AND WELDING ENGINEERING

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
110.	1	Basic features of power sources, Transformers, Generators, Rectifiers
	2	Factors for selection of power source, Power sources for SMAW, MIG, TIG, PAW, Pulse GMAW, Synergic GMAW.
(Unit I)	1	Arcing phenomenon, Metal transfer in Arc Welding, Arc-blow,
	2	Type of electrodes and their coatings, Electrodes for SMAW, MIG/MAG, TIG, SAW, PAW and their specification, fluxes for SAW.
	2	Distortion and Discontinuities in weldment, Testing, Inspection and Specifications
	2	Definition, weldability of carbon & alloy steels, cast Iron, stainless steel, Aluminium and copper
(Unit II)	2	Hydrogen induced cracking. Weldment distortion and its control,
(Omt 11)	1	various discontinuities in Welds, Residual stresses in Weldments
	2	Trouble shooting. Destructive and non-destructive methods of testing weldments
	1	WPS, PQR and ASME section IX Welding. Adhesive Bonding
	1	Design of Weldment : Weld geometry, Eccentric loading design in torsion and bending,
(T. 14 TY)	1	designing welding fixtures. Robotics and Automation in Welding
(Unit III)	1	Modes of Automation, Positioners
	1	Welding fixtures, Arc motion devices,
	2	seam tracking devices. Under water welding.
	2	Steel Casting: Foundry practice for plain carbon steel, low alloy & high steel
(Unit IV)	2	Cast Iron Castings: Foundry practice for grey, ductile & white cast iron & malleable iron.
	2	Nonferrous castings - foundry practice for Aluminum, Copper etc.
	1	Melting of casting iron, Steel & Nonferrous materials Cupola, Charge calculation
	1	Open Hearth furnace, Converter, Crucible furnace, Electric furnace,
(Unit V)	1	Direct are furnace, Induction furnace. Solidification of Casting
	1	Solidification of pure metals & alloys, solidification time, rate, properties related to freezing mechanisms
	2	Design of feeders and feed aids. Design of gating systems.
	1	cast product development cycle, parting line analysis, core design and mould
	1	cavity layout
(Unit VI)	1	Casting process planning. Foundry Mechanization: Modernization of foundries
(ОШС V1)	1	Moulding machines Material handling equipment's Foundry layout
	1	Heat Treatment of Casting: Stress relieving of casting
	2	Heat treatment for ferrous & non-ferrous casting.
Total	40	

Semester –A ME 33014: PRIME MOVERS AND PUMPS

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
110.		Internal Combustion: Introduction, Classification of LC. Engines,
	2	Constructional details of two-stroke & four-stroke engines and rotary engines,
	2	important parameters of design of engines, Volumetric efficiency and
		scavenging, Fuel ~air cycle analysis, Carburation and ignition systems of spark ignition engines,
	2	Carburetor details, TCI & CD1 ignition systems,
(Unit I)	1	Air fuel mixture & requirement, combustion process and
	1	detonation, compression ignition engines,
	1	injection systems for single and multi-cylinder engines, combustion and
	1	knocking, Fuel rating, alternative fuels,
	2	Supercharging and turbocharging, Cooling and lubrication system,
	2	Performance tests and characteristics of 1C Engines
	2	Steam Engineering: Rankine cycle, Reheat and regenerative cycles-Fuel
	2	and combustion,
	1	Industrial boilers, draught, Impulse and reaction turbines
(Unit II)	2	Velocity diagrams, reheat factors,
	1	condensers and cooling, Elementary idea of governing
	1	Introduction on Gas Turbines and Gas Propulsion
	2	Turbine cycles with intercooler and comparativestudies constructional
(Unit III)		details of axial-flow
(Cint III)	2	centrifugal compressors.
	2	Elementary of J et-propulsion and calculation of force,
	1	work and efficiency
	2	Classification of rotor-dynamic turbines and pumps, Velocity triangles
(Unit IV)	2	Euler's equation-of work done .and efficiencies.
	2	Constructional details of Pelton, Francis and Kaplan turbines.
	2	Characteristics and specific speed, Governing
	2	Pumps, Compressors, and Blowers, Positive displacement pumps,
(Unit V)	2	Blowers and their constructional details, characteristics and efficiencles,
(Cint 1)	2	Fluid converter and fluid couplings,
	2	Their application and characteristics, application to machine tool drives
Total	40	

Semester - B ME-33501: MECHATRONICS

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
	1	Open loop and control systems: Dynamic modelling of simple mechanical
-	1	electrical, electromechanical, thermal and fluid systems
(Unit	2	Transfer function and block diagram representation of control system.
I)	2	Zero order, first order and second order systems and their dynamic response, Routh Hurwitz stability criteria,
	2	, Introduction to Bode plot and root locus method. System modelling using MATLAB
	2	Measurement Systems: Generalized measurement system. Sensors and transducers, intermediate elements, indicating and recording elements
	2	Static and dynamic characteristics of measuring instruments, Amplitude
	2	linearity, phase linearity, bandwidth
(Unit	2	frequency response. Proximity sensors and switches, potentiometers,
II)		optical encoders, electrical strain gages, load cells,
	2	thermocouples, piezoelectric accelerometers, pressure and flow sensors,
		semiconductor sensors
	2	Signal Conditioning, & Data Acquisition
(Unit	2	Amplification. Filters. Operational amplifierand its applications
III)	2	Analog to digital conversion. Data acquisition
	2	Interfacing with micro-controller and micro-processor
(Timit	2	Actuators: Electro-mechanical actuators
(Unit IV)	2	solenoids and relays, types of electric motorsand their characteristics
11)	2	speed control of electric motors. Stepper motors and their control
	2	Electro-hydraulics and electro-pneumatic actuators, Servomotor
	2	Controllers: Basic control actions. Proportional
	2	integral and derivative control
(Unit V)	2	Estimation in foundry shop- Pattern allowances- The procedure for
	~	calculating material cost of a product for foundry shop
	2	OpAmp based PID controller. Combinatorial and sequential logic
	2	Simple logic networks Introduction of microcontrollers
Total	40	

Semester - B IP-33515: QUALITY CONTROL & RELIABILITY ENGINEERING

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
3,1,3,	2	Basic Concept of Quality Control & Product Quality
(T. 1. T.	1	Inspection & Quality Control, Quality System
(Unit I)	2	Quality cost concept, function of Quality control Deptt.
	1	Function of Quality Deptt.
	1	Statistical Quality Control : Statistical Concept
	1	Frequency distribution
	2	Process capability, variables and attributes
(Unit	1	Theory of Control Charts
II)	2	Control charts for variables, X bar and R-charts
11)	1	Applications of control charts for variables
	2	Controls charts for attributes, p,np C and demerit control charts
	2	Acceptance Sampling,
	2	Fundamental concepts
(Unit	2	OC-Curve – Construction of OC curve
III)	2	Sampling plans – Single, Double, Multiple & Sequential sampling plans.
	2	Dodge Roming, MIL-STD-105D, Indian standard sampling tables
	1	Selection of sampling plan
	1	Quality assurance
(Unit	1	Quality circle
IV)	1	Introduction to ISO 9000
	2	Six Sigma Quality System
	1	Zero defect concept
	1	Reliability: Definition
	1	Failure pattern of complex product
(Unit	1	Measurement of reliability
V)	1	Mean Time between failure and mean repair time
	2	Failure mode and effect analysis
	3	System reliability,
		Components in series, parallel & mixed system
Total	40	

Semester - B

IP-33503: PRINCILES OF MACHINE TOOLS

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
3,1,3,	2	Classification of machining operations and machine tool used for them.
	2	Basic features of machine tool construction
(Unit I)	2	Classes of machine tool motions Drive systems
	2	Conversion of motion, Rotation to rotation and rotation to translation.
	2	Kinematic structures of machine tools,
	2	elementary, complex and compound structure
	2	trength, Rigidity and Design Analysis of Machine Tool Spindle etc
(Unit	1	Elements compliance of machine tool
II)	2	Force analysis, Bearing Slides and guide ways of machine tools,
	1	Hydrostatic bearings.
	1	stepped regulation, cone pulley, change gear drive
	2	gear box drives constructional features of sliding
(Unit	2	clutched & clutch drives, Norton sample as regulation by electrical,
III)	2	mechanical friction and hydraulic system drives
	1	Principles of speed regulation
	2	selection of speed & feeds speed loss in stepped regulation. Design of gear boxes for speeds and feeds.
(Unit	2	Kinematic features of gear
IV)	2	shapers, Hobbers
_ , ,	2	bevel gear generating machines
	1	Capstan and turret lathes and their process layouts
	1	Single spindle automates
(Unit	1	multiple spindle automates
V)	1	There types and construction.
	_	CAM design for single spindle automates. Indexing and Bar feeding and
	2	clamping arrangement.
Total	40	

Semester - B IP 33516: METAL CUTTING AND METAL WORKING ANALYSIS

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
	2	Tool materials, their types and applications.
	2	Geometry of cutting tools like single point,,
	1	drills
(Unit	2	reamers, dies, taps,
I)	1	milling cutters for various cutting operations
	1	Mechanisms of tool wear
	1	Measurement of tool wear
	1	Tool Life and methods of improving tool life
	1	Orthogonal and oblique cutting.
	2	Mechanics of cutting
(Tinit	2	Shear angle relationship
(Unit II)	2	Merchant circle and force analysis for orthogonal cutting
11)	2	Friction and heat in metal cutting
	2	distribution of heat
	2	Machinability and economics of machining
	2	Deformation behavior of metals
(Unit	2	Stress and strain analysis
III)	2	Yield criteria, Flow lines and plastic deformation of metal
111)	2	slab method, slip line field
	2	Upper and lower bound holographs in sheet metal working
(Unit	2	Force analysis for strip rolling
IV)	2	Wires drawing and extrusion
(Unit	2	Formability test
V)	2	forming limit diagrams and their applications
Total	40	

Semester - B

IP 33007: COMPUTER AIDED DESIGN & MANUFACTURING

SLOT	NO OF	
S. NO.	LECTURES	TOPICS COVERED
5.110.	1	Importance & content of the subject. Introduction & Books
	1	Modeling definition in terms of CAD, Types of models.
	1	Wireframe modeling, surface & solid modeling, Wireframe models
	1	Parametric representation of analytical & synthetic curves, Surface models
(Unit I)		Solid modeling. Difference between wireframe, surface & solid
(611111)	1	modeling.
	1	Boundary representation & constructive solid geometry.
	1	Parametric & variational modeling.
	1	Feature based modeling.
		Introduction & definition of voxel based modeling, Volumetric modeling & voxel
	1	definition.
	1	Representative technique of voxel models – Exhaustive enumeration.
	1	Octee& array representation of volumetric model.
(Unit	1	Voxellization of geometrical models & definition of rendering.
II)	1	Voxellization techniques.
	1	Rendering of volumetric data.
	1	Volume & surface rendering.
	1	Volumetric modeling applications in CAD & other applications.
	1	Introduction to data exchange between CAD/CAM systems.
	1	Translators &there types.
	1	IGES
(Unit	1	STEP
III)	1	ACIS & DXF
,	1	Surface representation standards, STL.
	1	Use of CAD system to generate IGES, STEP & DXF file.
	1	Virtual reality, Makeup language.
	1	FEM introduction, Nodes & steps of FEA.
	1	Stresses & equilibrium. Boundary conditions.
	1	Strain-Displacement & Stress-Strain relationship.
(TT *4	1	Analysis Engineering problems.
(Unit	1	Continuous & discrete system, Solution by differential formulation.
IV)	1	Variational formulation, Potential energy &equilibrium (The Rayleigh ritz
	1	Method)
	1	Principal of minimum potential energy, Temperature effects.
	1	Discretization &piecewise approximation.
	1	Coordinate & Shape function.
	1	Element stiffness matrix, Global matrix.
	1	Assembly of matrix & load vector.
(Tini4	1	Properties of 'K', Solution of FE equations. Quadratic shape function.
(Unit V)	1	Post processing, Convergence requirements.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	Treatment of distributed loads, application to structural mechanicsproblems,
	1	Longitudinal/Bar axial problems.
	1	Beam problems, Plane stress/strain problems. Iso parametric formulation.
	1	Axis symmetric problem, Weighted residual approach.
TOTAL	40	

SHRI G. S. INSTITUTE OF TECHNOLOGY AND SCIENCE DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING

B.E./B. TECH III Year

Semester - B IP 33701: ADVANCED MACHINING PROCESSES

SLOT	NO OF	TOPIC COVER
S. NO.	LECTURES 1	Introduction of subject, lesson plan, books, course content
	1	Unconventional Machining importance and classification
	1	Principles of Abrasive Jet Machining its process parameters, applications &
	2	limitations
(Unit I)		Ultrasonic Machining principles and process parameters & Metal removal
	2	rate, transducer
		USM cutting tool design, velocity transformers, Economic consideration &
	2	numerical
	1	Chemical machining types and principles and uses.
	1	Chemical milling, engineering, blanking, process parameters
	1	Electrochemical machining principles, & parameters & element
(Unit	1	EDM Metal removal rate & electrochemistry
II)		Dynamics & hydrodynamic of EDM process optimization, Electrolytes,
	2	ECG,ECH
	1	Numerical
	1	Mechanism of Electrical discharge machining EDM
	1	M R Rate of EDM
(Unit	1	Circuit & elements of EDM
III)	1	Accuracy & Surface finish, tool material
	1	Application & limitation of EDM
	2	Analysis for optimization and numerical.
	1	Thermal machining process & types
	1	LBM features and metal removal rates
(I Init	1	LBM cutting aspects and accuracy
(Unit IV)	1	Applications & limitation of LBM & Micro drilling
11)	2	EBM theory & forces & process capability
	1	Plasma and machining & generation & forces.
	1	PAM metal removal rate, accuracy and application.
	1	Plastic types and its uses and compositions
	1	Molding deferent methods
	1	Injection molding methods
(Unit	1	Compressors molding methods
V)	1	Transfer & extrusion molding methods
	1	Calendaring and blow molding
	1	Lamination & Reinforcements
	1	Dies & mold design for rubber & plastic parts
Total	40	

Semester - B IP33702: MANUFACTURING ANALYSIS

SLOT	NO OF	TOPICS COVERED
S. NO.	LECTURES	
-	2	Internal functions of manufacturing company, Manufacturing cycle.
	1	Difference between Pre-production and post-production analysis, manufacturing analyst
(Unit I)		qualification
	2	Composition of an effective planning groups, coordination of engineering functions,
		communication between engineering groups.
	2	Phases of analysis
	1	Pre-production analysis
	2	Post-production analysis
	1	Product engineering.
(Unit	1	Process engineering
II)	2	Introduction to part print analysis, Establishing general characteristics of part print.
	2	Functional surfaces of work piece, determining areas used for processing.
	1	Specifications, Nature of the work to be performed.
	1	Computer Aided Process Planning
(Unit	1	Selection of Materials
III)	1	Analysing Cost and function
	1	Selection of Manufacturing Process
	1	Selection of tooling
	1	Group Technology Concepts
	2	Part Classification and Coding
(T.)	1	Coding Structures
(Unit	2	Numerical of GT
IV)	1	Practice Session
	1	Production Flow Analysis
	1	Cell Manufacturing
	2	Computer Aided Process Planning
	1	Dimensional Tolerance
	1	Flatness, Parallelism
(Unit	1	Concentricity, Squareness
v)	1	Tolerance stacks design
	2	Tolerance Chart Introduction
	1	Importance of Tolerance Chart
Total	40	

SHRI G. S. INSTITUTE OF TECHNOLOGY AND SCIENCE DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING

B.E./B. TECH III Year

Semester - B IP33507: CIM and Automation

SLOT S. NO.	NO OF LECTURES	TOPICS COVERED
312101	1	Definition CIM Wheel Concept, Evolution of CIM
	1	CIM & Systems View of Manufacturing and CIM
(TI:4 T)	2	Sequential Engineering & Concurrent Engineering; Overviews of Manufacturing
(Unit I)	2	Industries, Classes of machine tool motions Drive systems
	2	Production Systems, and Plant Layouts, Fundamentals of Manufacturing Automation,
	<u> </u>	Functions in Manufacturing
	2	Basic Elements of an Automated System, Advanced Automation Functions
	2	Levels of Automation; Industrial Control Systems: Discrete, Continuous, and Computer
		Process Control
		Elements for Automation and Process Control: Sensors, Actuator, Analog- Digital
(T. 1.4	2	Conversions, Input / Output Devices for Discrete Data, Introduction of CNC Technology
(Unit		and its Applications;
II)	2	Industrial Robotics: Robot Anatomy, Robot Classification, Essential Features and
		Characteristics, and Common Configuration
	2	Discrete Control and Programmable Logic Controllers (PLCs): Discrete Process Control,
		Ladder Logic Diagrams, PLCs, Programmable Automation Controllers Metarial Transportation Systems Overview of Metarial Handling, Metarial Transport
	1	Material Transportation System: Overview of Material Handling, Material Transport
		Equipment Analysis of Material Transport Systems; Storage Systems: Introduction to Storage
	2	Systems: Conventional Storage Methods and Equipment
		Automated Storage Systems, Analysis of Storage Systems; Automatic Identification and
(Unit	2	Data Capture: Overview of Automatic Identification Methods
III)	1	Bar Code Technology, Radio Frequency Identification, AIDC Technologies
	2	Overview of Manufacturing Systems, Automation Strategies, Automated Flow Lines,
	2	Automation for Machining Operations Design & Fabrication Consideration
		Control Functions, Buffer Storage, Methods of Work Part Transport, Transfer
	2	Mechanism.
		Concept, Part Family Formation, Part Classification and Coding System Types, OPITZ
	2	System
		Production Flow Analysis, Composite Part Manufacturing and Machine Cell Formation.
(Unit	2	Computer Aided Process Planning and its types
IV)		Flexible Manufacturing Systems: Concept, Component and Types. Automated Storage
		and Retrieval Systems, Flexibility Analysis, FMS Scheduling
		Computer Aided Quality Control: Introduction of Computer Aided Quality Control
	2	(CAQC).
	1	Stereo-Lithography, Selective Photo-curing,
(Unit	1	Selective Sintering, Fused Deposition Modeling
V)	1	Laminated Object Manufacturing, 3D Printing
	1	Application of RP Techniques, Emerging in RP, RP Methodology
Total	40	