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Unit – 5: Quantum Computing 
Quantum Computation: Classical Gates and operations, AND, OR, NAND, XOR Gates and operations. 
Unitary operations, Pauli Matrices, Quantum Logics: Hadamard, Pauli-X, Y, Z and R, CNOT, Swap Gates 
and their unitary operations, influence of ECG Sudharshan and GS Agarwal. 

Introduction: 
Classical digital computers, which operate on bits as either 0 or 1, are incredibly powerful 

but face inherent limitations when solving certain complex problems. As technology 

pushes limits like miniaturization and speed, classical computers confront physical and 

computational barriers. Some problems—such as simulating quantum systems, 

optimizing vast combinations, or factoring large numbers—become intractable or would 

take classical supercomputers thousands of years to solve. Quantum computers leverage 

the principles of quantum mechanics to overcome these limitations and open new 

frontiers of computing power. 

Digital computers process information deterministically using bits, which restricts their 

ability to represent and explore multiple probabilities simultaneously. This makes them 

inefficient at solving problems that require exploring many possibilities or complex 

interactions in parallel. Additionally, classical algorithms often scale poorly, resulting in 

exponential growth in computation time and power for certain tasks like cryptography, 

material simulations, and combinatorial optimization. 

Key limitations of classical digital computers explained simply for students: 

• Limited Processing Power for Complex Problems: Classical computers use bits 

as either 0 or 1, which restricts their ability to handle problems requiring 

simultaneous exploration of many possibilities. This makes tasks like simulating 

molecules or factoring large numbers very slow or practically impossible. 

• Inability to Handle Exponential Growth of Data: Many problems grow 

exponentially in complexity, and classical computers have difficulty scaling 

efficiently to solve these within reasonable time. 

• Lack of Intuition and Common Sense: Computers follow precise instructions 

without understanding context; they cannot make decisions or learn on their own 

without explicit programming. 

• Deterministic and Sequential Nature: Classical computers process information 

in a sequential, deterministic way, limiting their ability to perform massive 

parallel computation naturally. 

• Physical Limitations: Issues like heat generation, power consumption, and 

transistor size limits affect the speed and miniaturization of classical computers. 
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• Vulnerability to Errors and Failures: They can be affected by hardware failures, 

software bugs, and security vulnerabilities like viruses and hacking. 

• Dependence on Instructions: They cannot innovate or create new solutions 

independently but require human input for every task. 

These limitations motivate the development of new technologies like quantum 

computers that can process complex information in fundamentally different ways. 

 

 

 

The image presents a graph showing the trend of electrons per device against the 

increasing number of transistors per chip over time, spanning from 1988 to around 2020. 
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As the number of transistors per chip grows from 4 million (4M) in 1988 to 16 billion 

(16G) in later years, the number of electrons required per device drops dramatically. This 

downward trend, indicated by arrows, reaches nearly single electrons per device by 

around 2008. The chart demonstrates that as chip technology advances, devices operate 

with fewer and fewer electrons, highlighting the progression toward physically smaller 

and more efficient electronic components. Such miniaturization brings classical 

computation closer to physical and quantum limits, which pose significant challenges for 

further scaling. This trend is one reason why alternative computing technologies like 

quantum computing are being explored. 

The data exhibited above illustrates theoretical limitation of Moore’s Law, which 

observes that the number of transistors on microchips has doubled approximately every 

two years from 1970 to 2020. This dramatic growth in transistor count, from just a few 

thousand to tens of billions, enabled rapid increases in computing power over the 

decades. The graph displays various processor models, showing a consistent exponential 

rise in the number of transistors with each new generation of chips. This trend has been 

a key driver in the advancement of technology, making computers faster, more efficient, 

and more affordable. However, maintaining Moore’s Law has also become increasingly 

challenging due to physical and engineering limitations as components approach atomic 

scales. This visualization emphasizes the historical importance of transistor scaling in 

technological progress and hints at the growing need for new computing paradigms as 

we approach fundamental limits. 

A comparison of Classical and Quantum Computers 
Property Classical Computer Quantum Computer 
States Defined precisely Defined using probability functions and are 

more accurate 
Bits c-bit 

0 or 1 
q-bit or Qubit 
0, 1 and superposition of 0 & 1 

Operations Using two bits only 1 qubit →|0 or |1 or |0+|1 or |0-|1 
2 qubit →|00, |11, |01, |10 and their 
superposition 
3 qubit →|000, |111, |001,  |010, |011, 
|100, |101, |110 and their superposition 
……. 
N qubit → |00…..0 --- |11…..1 and their 
suprposition 
 

Operations Boolean logical  Unitary 
Gates AND, OR, NOT, XOR, 

NAND, NOR, .. 
Hadamard, X, Y, Z, T, C-NOT, Toffoli/CC-NOT, 
….. 

Speed Limit reached Unimaginable speed 
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Classification of Quantum Computers 
Quantum computers are generally categorized into three approaches: Quantum 

Annealer, Analog Quantum, and Universal Quantum computers, each with distinct 

operational principles and applications. 

 

Quantum Annealer 

• Quantum annealing is a specialized quantum computing approach designed for 

solving optimization problems by finding minimum energy states in complex 

systems. 

• Quantum annealers, such as those built by D-Wave, use quantum fluctuations and 

adiabatic evolution to quickly explore potential solutions and converge on the 

"best" answer for problems like scheduling, logistics, or materials design.  

• They are efficient and practical for optimization tasks, but cannot run general-

purpose quantum algorithms such as Shor’s or Grover’s. 

Analog Quantum 

• Analog quantum computers simulate quantum systems by directly mapping the 

problem's parameters onto the behavior of a controlled quantum system. 

• This model is ideal for studying quantum physics, chemistry, and material 

interactions, but lacks the flexibility and universality of gate-based systems. 

• Applications include exploring dynamics of molecules, modeling physical systems, 

and studying quantum phase transitions. 
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Universal Quantum (Gate-based) 

• Universal quantum computers, often called gate-based quantum computers, use 

sequences of quantum gates to manipulate qubits and implement any quantum 

algorithm. 

• These machines are capable of solving a wide variety of computational problems, 

from factoring large numbers (Shor’s algorithm) to rapid database search 

(Grover’s algorithm) and complex simulations.  

• Examples include IBM, Google, and IonQ devices; though extremely powerful, they 

are still in development due to engineering challenges for large-scale, error-

corrected qubits. 

Classical Gates and Operations 
 

 

Questions on Logic Gates (Classic Gates/Digital Gates) 
1. Construct a half adder using digital gates 

2. Which one is known as universal gate. Construct AND, OR and NOT logic from NAND 

Gate(s). 

3. Convert a single NAND/NOR gate into a NOT GATE. 

Unitary Operations, Pauli Matrices 
At the end of 19th Century scientists believed that the laws of Physics (which were known 

at that time) are enough to explain all the events Occur in nature. It was felt that there are 
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Quantum Logics and Gates 
In this course we limit ourselves to one and two-qubit systems only. Also, we will learn 

to use the Quantum operators corresponding to the single and two-qubit Gates. A 

summary is shown in the following table: 

GATE SYMBOL Matrix Operator 

X gate 
(Flip-flop) 

 
(

0 1
1 0

) 

Y gate 
(Flip-flop) 

 

(
0 −𝑖
𝑖 0

) 

Z gate 
 

 (
1 0
0 −1

) 

Hadamard 
gate 

 1

√2
(

1 1
1 −1

) 

Phase gate 
 

 
(

1 0
0 ⅇ𝑖𝜑) 

 
C-NOT Gate 

 

(

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) 

SWAP Gate 
 

(

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

) 

State Symbol Matrix Representation 

0 |0⟩ (
1
0

) 

1 |1⟩ (
0
1

) 

00 |0⟩⨂|0⟩  =  |00⟩ (
1
0

) ⨂ (
1
0

) = (

1
0
0
0

) 

01 |0⟩⨂|1⟩  =  |01⟩ (
1
0

) ⨂ (
0
1

) = (

0
1
0
0

) 

10 
 
 
 
 
 

|1⟩⨂|0⟩  =  |10⟩ (
0
1

) ⨂ (
1
0

) = (

0
0
1
0

) 

11 |1⟩⨂|1⟩  =  |11⟩ (
0
1

) ⨂ (
0
1

) = (

0
0
0
1

) 

X 

Y 

Z 

H 

P 
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Three Key concepts in Quantum Computing 

 

1. Superposition 
Superposition in quantum computing is a fundamental principle where a quantum bit 

(qubit) can exist in multiple states simultaneously, rather than being limited to just 0 or 

1 like a classical bit. 

What Is Superposition? 
In classical computing, a bit is always either 0 or 1 at any given moment. In quantum 

computing, however, a qubit can be in a state represented by any combination (called a 

linear combination or superposition) of 0 and 1 at the same time. This allows quantum 

computers to process a vast number of possibilities in parallel and underpins the massive 

potential speedup in certain quantum algorithms. 

Mathematical Representation 
A qubit in superposition is typically described mathematically as: 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 

where |0⟩ and |1⟩are the basic states of a single bit quantum computer (similar to 0 and 

1 in classical computers), and 𝛼  and 𝛽  are complex coefficients called probability 

amplitudes, which determine the likelihood of measuring the qubit in each state. When 

you measure a qubit, the superposition "collapses" to either 0 or 1 based on these 

probabilities. The normalization condition requirement leads to a condition that 

|𝛼|2 + |𝛽|2 = 1 
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Why Superposition is Important? 
• A single qubit in superposition can encode far more information than a classical 

bit. 

• With 𝑛 qubits, a quantum computer can represent 2𝑛 different states at the same 

time—a huge leap in information capacity and parallelism compared to classical 

bits. 

• Superposition, together with quantum entanglement, is what enables quantum 

computers to solve specific problems much faster than classical computers. 

2. Entanglement 

 

Entanglement is a quantum phenomenon in which the quantum states of two or more 

particles become interconnected such that the state of each particle cannot be described 

independently of the others, even if they are separated by large distances. 

Key Features 
• When two particles are entangled, measuring the state of one instantly determines 

the state of the other, regardless of how far apart they are. 

• Entangled systems act as unified ensembles whose full description requires 

considering all particles together, not individually.  

• Entanglement often arises through direct interaction between particles or 

processes such as spontaneous parametric down-conversion in photons, decay 

cascades in quantum dots, or other quantum effects. 

Importance of Entanglement in quantum computing 
• Entanglement is fundamental to quantum mechanics and forms the basis for 

modern quantum technologies such as quantum computing, quantum 

cryptography, and quantum teleportation. 
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• The behavior of entangled particles defies classical explanations and has been 

experimentally confirmed in many settings, highlighting the nonlocal nature of 

quantum reality. 

• An entangled pair is mathematically represented by a quantum state in the 

tensor product space of the individual particles' states, which cannot be 

factored into a product of states of each particle alone. A classic example is the 

Bell singlet state for two qubits (such as electron spins): 

|𝜓⟩ =
1

√2
(|0⟩

A ⊗ |1⟩
B + |1⟩

A ⊗ |0⟩
B)  =  

1

√2
(|01⟩ + |10⟩) 

or equivalently based on electron up an down spins 

|𝜓⟩ =
1

√2
(|↑⟩

A ⊗ |↓⟩
B + |↓⟩

A ⊗ |↑⟩
B)  =  

1

√2
(|↑↓⟩ + |↓↑⟩) 

• Where |0⟩ and |1⟩ (or |↑⟩ and |↓⟩) denote orthonormal basis states of each 

particle. This superposition state is inseparable, meaning it cannot be written 

as a simple product like  |𝜓⟩
A

⊗ |𝜙⟩
B

 this inseparability is the hallmark of 

entanglement. 

• For example the states defined by |𝜓⟩ =
1

√2
(|01⟩ + |11⟩) are separable, and it 

can be written as |𝜓⟩ =
1

√2
(|0⟩ + |1⟩) ⊗ |1⟩, hence this is not an entangled state. 

• Only the following four pair of states (|𝜓⟩+
, |𝜓⟩-

, |𝜙⟩+
and |𝜙⟩-

) are entangled in 

a two-qubit system. 

|𝜓⟩±
=  

1

√2
(|01⟩ ± |10⟩) and |𝜑⟩±

=  
1

√2
(|00⟩ ± |11⟩) 

• These pairs are also called as entangled pair, Bell Pair, EPR pair. 

• In matrix terms, an entangled state corresponds to a coefficient matrix that has 

nonzero determinant (or equivalently, cannot be decomposed into rank-1 

tensors). The singlet state above exhibits perfect quantum anti-correlation 

between particle measurements, a key property used in quantum computing 

protocols. 

• This mathematical representation captures how measurement of one particle 

instantly determines the state of the other, even at a distance, illustrating the 

nonlocal character of entanglement. 

• Thus, entangled pairs are formally represented as specific superpositions in the 

tensor product Hilbert space of the two particles, fundamentally different from 

separable classical states 

Observation (or Measurement) 
In quantum computing, "measurement" is the process of extracting classical information 

from a quantum system, typically from qubits. Unlike classical measurement, which 

simply reveals a pre-existing state, quantum measurement actively changes the system 

by collapsing the qubit's wavefunction—a superposition of multiple states—into a 
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definite classical state, usually 0 or 1, with probabilities dictated by the quantum state 

prior to measurement. 

• It is an irreversible process that destroys the superposition and entanglement of 

measured qubits. 

• Measurement outcomes are inherently probabilistic, reflecting the amplitudes in 

the quantum state. 

• Measuring one qubit in a multi-qubit system can affect the overall state due to 

entanglement. 

• Measurements can be done at the end (full-system measurement) or during 

quantum computation (mid-circuit), enabling conditional operations and error 

correction. 

• Quantum measurement bridges the quantum and classical worlds by translating 

quantum information into usable classical data for further processing.  

Thus, measurement in quantum computing is a critical operation that both reveals and 

fundamentally alters the quantum state to obtain meaningful classical outcomes from 

quantum algorithms. 

Serial operations of Hadamard Gate: 
 

|0⟩        |0⟩      

 

|0⟩      (|0⟩ + |1⟩)/√2      

 

Serial operations of quantum gates are equivalent to matrix multiplications and does not 

change the dimensions of the matrix operators. 

Parallel operations of Quantum Gates 
Parallel operations of quantum gates are tensor products, hence change the matrix 

dimensions. Two Gates A and B if operated on parallel which is equivalent to A⊗B. 

 

Solving Quantum Circuits (2-Qubits only) 
In order to solve a quantum circuit it can be divided into series of unitary matrices and 

shall be operated from the left side to right side. 

H H H H 

H H H 
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Sample Questions on Quantum Computing 
 

1. If  |𝜓⟩ = |0⟩, find H|𝜓⟩, X|𝜓⟩ and Z|𝜓⟩. 

2. If  |𝜓⟩ =
|0⟩−|1⟩

√2
, find H|𝜓⟩, X|𝜓⟩ and Z|𝜓⟩. 

3. Using unitary matrices, estimate the following: 𝐻 ⊗ 𝑍, 𝑋 ⊗ 𝑍 and 𝐻 ⊗ 𝐻. 

4. Show that 𝐻 =
𝑋+𝑍

√2
. 

5. Find the output of the following,  

if  (𝑖) |𝜓⟩ = |0⟩, (𝑖𝑖) |𝜓⟩ = |0⟩ + |1⟩ and (𝑖𝑖𝑖) |𝜓⟩ = |1⟩ 

 

|𝜓⟩       |? ⟩ 

 

 

6. What are entangled pair? How to generate it? 

7. Show that for all possible inputs, the quantum circuit shown here produces an 

entangled pair (or Bell pair). 

 

8. Show that a SWAP gate can be composed from 𝑆𝑊𝐴𝑃 =
𝐼⨂𝐼+𝑋⨂𝑋+𝑌⨂𝑌+𝑍⨂𝑍

2
 

H X I Z 

H 
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9. Find |? ⟩ In the following circuits. 

 

____END of QC____ 


