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Unit — 5: Quantum Computing

Quantum Computation: Classical Gates and operations, AND, OR, NAND, XOR Gates and operations.
Unitary operations, Pauli Matrices, Quantum Logics: Hadamard, Pauli-X, Y, Zand R, CNOT, Swap Gates
and their unitary operations, influence of ECG Sudharshan and GS Agarwal.

Classical digital computers, which operate on bits as either 0 or 1, are incredibly powerful
but face inherent limitations when solving certain complex problems. As technology
pushes limits like miniaturization and speed, classical computers confront physical and
computational barriers. Some problems—such as simulating quantum systems,
optimizing vast combinations, or factoring large numbers—become intractable or would
take classical supercomputers thousands of years to solve. Quantum computers leverage
the principles of quantum mechanics to overcome these limitations and open new
frontiers of computing power.

Digital computers process information deterministically using bits, which restricts their
ability to represent and explore multiple probabilities simultaneously. This makes them
inefficient at solving problems that require exploring many possibilities or complex
interactions in parallel. Additionally, classical algorithms often scale poorly, resulting in
exponential growth in computation time and power for certain tasks like cryptography,
material simulations, and combinatorial optimization.

Key limitations of classical digital computers explained simply for students:

e Limited Processing Power for Complex Problems: Classical computers use bits
as either 0 or 1, which restricts their ability to handle problems requiring
simultaneous exploration of many possibilities. This makes tasks like simulating
molecules or factoring large numbers very slow or practically impossible.

o Inability to Handle Exponential Growth of Data: Many problems grow
exponentially in complexity, and classical computers have difficulty scaling
efficiently to solve these within reasonable time.

e Lack of Intuition and Common Sense: Computers follow precise instructions
without understanding context; they cannot make decisions or learn on their own
without explicit programming.

e Deterministic and Sequential Nature: Classical computers process information
in a sequential, deterministic way, limiting their ability to perform massive
parallel computation naturally.

o Physical Limitations: Issues like heat generation, power consumption, and

transistor size limits affect the speed and miniaturization of classical computers.
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PH10009- APPLIED PHYSICS Unit-5 Quantum Computing

e Vulnerability to Errors and Failures: They can be affected by hardware failures,
software bugs, and security vulnerabilities like viruses and hacking.

o Dependence on Instructions: They cannot innovate or create new solutions
independently but require human input for every task.

These limitations motivate the development of new technologies like quantum
computers that can process complex information in fundamentally different ways.
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Moore’s Law: The number of transistors on microchips doubles every two years [SHERE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers
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The image presents a graph showing the trend of electrons per device against the
increasing number of transistors per chip over time, spanning from 1988 to around 2020.
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As the number of transistors per chip grows from 4 million (4M) in 1988 to 16 billion
(16G) in later years, the number of electrons required per device drops dramatically. This
downward trend, indicated by arrows, reaches nearly single electrons per device by
around 2008. The chart demonstrates that as chip technology advances, devices operate
with fewer and fewer electrons, highlighting the progression toward physically smaller
and more efficient electronic components. Such miniaturization brings classical
computation closer to physical and quantum limits, which pose significant challenges for
further scaling. This trend is one reason why alternative computing technologies like
quantum computing are being explored.

The data exhibited above illustrates theoretical limitation of Moore’s Law, which
observes that the number of transistors on microchips has doubled approximately every
two years from 1970 to 2020. This dramatic growth in transistor count, from just a few
thousand to tens of billions, enabled rapid increases in computing power over the
decades. The graph displays various processor models, showing a consistent exponential
rise in the number of transistors with each new generation of chips. This trend has been
a key driver in the advancement of technology, making computers faster, more efficient,
and more affordable. However, maintaining Moore’s Law has also become increasingly
challenging due to physical and engineering limitations as components approach atomic
scales. This visualization emphasizes the historical importance of transistor scaling in
technological progress and hints at the growing need for new computing paradigms as
we approach fundamental limits.

Property Classical Computer Quantum Computer

States Defined precisely Defined using probability functions and are
more accurate

Bits c-bit g-bit or Qubit

Oor1l 0, 1 and superposition of 0 & 1

Operations  Using two bits only 1 qubit —|0) or |1) or |0)+]|1) or |0)-|1)
2 qubit —|00), [11), |01), |10) and their
superposition

3 qubit —»|000), [111), |001), |010), |011),
|100), |101), |110) and their superposition

N qubit = |00....0) --- |11....1) and their

suprposition
Operations  Boolean logical Unitary
Gates AND, OR, NOT, XOR, Hadamard,X,Y,Z T, C-NOT, Toffoli/CC-NOT,
NAND, NOR, ..
Speed Limit reached Unimaginable speed
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Unit-5 Quantum Computing

Classification of Quantum Computers
Quantum computers are generally categorized into three approaches: Quantum
Annealer, Analog Quantum, and Universal Quantum computers, each with distinct
operational principles and applications.

Different Types of Quantum Computing

Quantum
Annealing
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and has immense benefits over
conventional computing
approaches

® |t has the same computational

power as traditional computers,

Analog Quantum
Simulations

e They are more inclined toward
finding problems and
associated with ind
on quantum physics an
ch

* [t has a high computational power.

¢ |t might contain around 50 to 100

Universal Quantum
Computing

|t enables users to perform highly
cumbersome computations wit
zero errors in no time

® |ts computation power is ultra-high

* The number o 1S can be over

100,000 in num

Ll
* It might contain a few qubits qubits,

Quantum Annealer

e Quantum annealing is a specialized quantum computing approach designed for
solving optimization problems by finding minimum energy states in complex
systems.

e Quantum annealers, such as those built by D-Wave, use quantum fluctuations and
adiabatic evolution to quickly explore potential solutions and converge on the
"best" answer for problems like scheduling, logistics, or materials design.

o They are efficient and practical for optimization tasks, but cannot run general-
purpose quantum algorithms such as Shor’s or Grover’s.

Analog Quantum

e Analog quantum computers simulate quantum systems by directly mapping the
problem's parameters onto the behavior of a controlled quantum system.

e This model is ideal for studying quantum physics, chemistry, and material
interactions, but lacks the flexibility and universality of gate-based systems.

e Applications include exploring dynamics of molecules, modeling physical systems,
and studying quantum phase transitions.
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Universal Quantum (Gate-based)

e Universal quantum computers, often called gate-based quantum computers, use
sequences of quantum gates to manipulate qubits and implement any quantum
algorithm.

e These machines are capable of solving a wide variety of computational problems,
from factoring large numbers (Shor’s algorithm) to rapid database search
(Grover’s algorithm) and complex simulations.

e Examplesinclude IBM, Google, and IonQ devices; though extremely powerful, they
are still in development due to engineering challenges for large-scale, error-
corrected qubits.

Classical Gates and Operations

1 - D ) o—

XOR

A|B| Output A|B| Output A|B| Output
010 0 010 0 010 0
011 0 011 1 011 1
10 0 10 1 110 1
111 1 111 1 11 0
NAND NOR XNOR

A | B | Output A|B| Output A|B| Output
010 1 010 1 010 1
011 1 011 0 0]1 0
10 1 1|0 0 110 0
11 0 11 0 11 1

Questions on Logic Gates (Classic Gates/Digital Gates)
1. Construct a half adder using digital gates
2. Which one is known as universal gate. Construct AND, OR and NOT logic from NAND
Gate(s).
3. Convert a single NAND/NOR gate into a NOT GATE.

Unitary Operations, Pauli Matrices

At the end of 19th Century scientists believed that the laws of Physics (which were known

at that time) are enough to explain all the events Occur in nature. It was felt that there are
.
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In this course we limit ourselves to one and two-qubit systems only. Also, we will learn
to use the Quantum operators corresponding to the single and two-qubit Gates. A
summary is shown in the following table:

GATE SYMBOL Matrix Operator
X gate (0 1)
(Flip-flop) — X e 10
Y gate 0 —i
(Flip-flop) — Y (i 0)
Z gate ——— — 10
Z (o 1)
Hadamard i(l 1)
gate —_—1 H 2\ -1
Phase gate 1 O)
— P — 0 e¢
1 0 0 O
01 0 0
C-NOT Gate 0 001
U 00 1 0
1 0 0 O
SWAP Gate >< 8 2 (1) 8
0 0 0 1
State Symbol Matrix Representation
1
0 0) (0)
1 |1) ((1))
1
1 1
00 10)®|0) = [00) (o)®(o) - <8>
0
0
01 0)®I1) = |01) ((1))@’((1)) = (3)
0
10
0
1
11)®0) = 10) (De() =<?>
0
0
11 1H®[1) = [11) ((1))‘8’((1)) - <8>
1

SHRIG
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Three Key concepts in Quantum Computing

SUPERPOSITION ENTANGLEMENT OBSERVATION

Superposition describes a Quantum entanglement Superposition and
particle’s ability to exist refers to a situation in entanglement only exist as
across many possible states which two or more particles long as quantum particles
at the same time. So the are linked in such a way are not observed or
state of a particle is best that it is impossible for measured. “Observing” the
described as a them to be described quantum state yields
“superposition” of all those independently even if information but results in
possible states. separated by a large the collapse of the system.
distance.

1. Superposition

Superposition in quantum computing is a fundamental principle where a quantum bit
(qubit) can exist in multiple states simultaneously, rather than being limited to just 0 or
1 like a classical bit.

What Is Superposition?

In classical computing, a bit is always either 0 or 1 at any given moment. In quantum
computing, however, a qubit can be in a state represented by any combination (called a
linear combination or superposition) of 0 and 1 at the same time. This allows quantum
computers to process a vast number of possibilities in parallel and underpins the massive
potential speedup in certain quantum algorithms.

Mathematical Representation
A qubit in superposition is typically described mathematically as:

) = al0) + BI1)

where |0) and |1)are the basic states of a single bit quantum computer (similar to 0 and
1 in classical computers), and @ and £ are complex coefficients called probability
amplitudes, which determine the likelihood of measuring the qubit in each state. When
you measure a qubit, the superposition "collapses” to either 0 or 1 based on these
probabilities. The normalization condition requirement leads to a condition that

|lal? + 181> = 1
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Why Superposition is Important?
e A single qubit in superposition can encode far more information than a classical
bit.

e With n qubits, a quantum computer can represent 2" different states at the same
time—a huge leap in information capacity and parallelism compared to classical
bits.

o Superposition, together with quantum entanglement, is what enables quantum
computers to solve specific problems much faster than classical computers.

2. Entanglement
Photon
. ﬁ Source %.
ha

P E e

Entanglement is a quantum phenomenon in which the quantum states of two or more
particles become interconnected such that the state of each particle cannot be described
independently of the others, even if they are separated by large distances.

Key Features
e When two particles are entangled, measuring the state of one instantly determines
the state of the other, regardless of how far apart they are.

o Entangled systems act as unified ensembles whose full description requires
considering all particles together, not individually.

o Entanglement often arises through direct interaction between particles or
processes such as spontaneous parametric down-conversion in photons, decay
cascades in quantum dots, or other quantum effects.

Importance of Entanglement in quantum computing
o Entanglement is fundamental to quantum mechanics and forms the basis for
modern quantum technologies such as quantum computing, quantum
cryptography, and quantum teleportation.
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e The behavior of entangled particles defies classical explanations and has been
experimentally confirmed in many settings, highlighting the nonlocal nature of
quantum reality.

e An entangled pair is mathematically represented by a quantum state in the
tensor product space of the individual particles' states, which cannot be
factored into a product of states of each particle alone. A classic example is the
Bell singlet state for two qubits (such as electron spins):

1

V2

or equivalently based on electron up an down spins

9 = (11, ® 1y + 1), @ 1)) = =111+ 1)

e Where |0) and |1) (or |T) and |l)) denote orthonormal basis states of each
particle. This superposition state is inseparable, meaning it cannot be written
as a simple product like |¢), & |¢); this inseparability is the hallmark of
entanglement.

e For example the states defined by |y) =

1
ly) = ﬁ(m)A ® [1)g + 1), ® 10)g) = —(101) + |10))

\%(IOl) + |11)) are separable, and it
\% (]0) + [1)) ® |1), hence this is not an entangled state.

e Only the following four pair of states (Ip)F, 1wy, 1) and |¢)) are entangled in
a two-qubit system.

)" = =(101) £ 110)) and [p)* = (100) £ |11))

e These pairs are also called as entangled pair, Bell Pair, EPR pair.

e In matrix terms, an entangled state corresponds to a coefficient matrix that has
nonzero determinant (or equivalently, cannot be decomposed into rank-1
tensors). The singlet state above exhibits perfect quantum anti-correlation
between particle measurements, a key property used in quantum computing
protocols.

e This mathematical representation captures how measurement of one particle
instantly determines the state of the other, even at a distance, illustrating the
nonlocal character of entanglement.

e Thus, entangled pairs are formally represented as specific superpositions in the
tensor product Hilbert space of the two particles, fundamentally different from
separable classical states

can be written as [y) =

In quantum computing, "measurement” is the process of extracting classical information
from a quantum system, typically from qubits. Unlike classical measurement, which
simply reveals a pre-existing state, quantum measurement actively changes the system
by collapsing the qubit's wavefunction—a superposition of multiple states—into a
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definite classical state, usually 0 or 1, with probabilities dictated by the quantum state
prior to measurement.

o [Itis an irreversible process that destroys the superposition and entanglement of
measured qubits.

e Measurement outcomes are inherently probabilistic, reflecting the amplitudes in
the quantum state.

e Measuring one qubit in a multi-qubit system can affect the overall state due to
entanglement.

e Measurements can be done at the end (full-system measurement) or during
quantum computation (mid-circuit), enabling conditional operations and error
correction.

e Quantum measurement bridges the quantum and classical worlds by translating
quantum information into usable classical data for further processing.

Thus, measurement in quantum computing is a critical operation that both reveals and
fundamentally alters the quantum state to obtain meaningful classical outcomes from
quantum algorithms.

Serial operations of Hadamard Gate:

0 0
P _IH H H H —X
|0) oy + [1)/V2

— H H H

Serial operations of quantum gates are equivalent to matrix multiplications and does not
change the dimensions of the matrix operators.

Parallel operations of Quantum Gates
Parallel operations of quantum gates are tensor products, hence change the matrix

dimensions. Two Gates A and B if operated on parallel which is equivalent to A®B.

V) —A—AlY) V) — —
& A® B (A® B)]Y @ ¢)

9) — B—Bl¢) ) — —

In order to solve a quantum circuit it can be divided into series of unitary matrices and

shall be operated from the left side to right side.
- |
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Solve the following:

1) AL B C1—¢1)
|12) |p2)

SOLUTION
Step 1:

vy | Un Us Us | o),

where ‘ZD) = |7,b1> X ‘ZDQ), Ui =A1 ® A, Uy =B®I, U3 =Cy®Cy and |¢> =
|p1) © |p2). Do note that for Us, it is assumed that a straight connecting line is
equivalent to an Identity matrix operation. It is further simplified as

Step 2:

%) )

Here U = U3U2U]_.
Step 3: Find the output states from the following

9y =Ul¢).

Now, decompose |¢1) and |¢2) from |¢) and report.

Sample Questions on Quantum Computing

ARSI

If [1) = |0), find H|), X|y) and Z[).

If [ih) = 'OQ‘E'”, find H|), X|1) and Z[1)).

Using unitary matrices, estimate the following: H @ Z, X ® Zand H Q H.

X+Z
Show that H = 7

Find the output of the following,

if (1) [) = 10), (id) [¥) = |0) + 1) and (iii) [¥) = |1)

) 17)

H X l V4

What are entangled pair? How to generate it?
Show that for all possible inputs, the quantum circuit shown here produces an

=D

\

entangled pair (or Bell pair).

IQI+XRX+YQRY+ZQZ

Show that a SWAP gate can be composed from SWAP = >
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9. Find |?) In the following circuits.

(9a): Find |77)
10) 7)

10) D 17)
(9b): If a Gate is connected in series for four times, the input state remains un-
changed as shown below. Find all Quantum Gates which satisfies the following

quantum circuit,
0) 0)

(9¢): If a Gate is connected in series for any number of times, the input state
statisfies the following. Find all Quantum Gates which satisfies both the quantum
circuits shown below,

0 0)
) 2D

(9d) Using matrix method show that:

f
-
L/ L/
_ _ENDofQC___
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