written as
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lf ich can |
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dt

o . considered the input and output, respectively, then the transfer function of the system is
L p
| Pls) 1

P(s) RCs+I

RC has the dimension of time and is the time constant of the system
L‘ a2

LER _NICHOLS RULES FOR TUNING ID CONTROLLERS

I of Plants. Figure shows a PID control of a plant. If a mathematical model of the plant can be

Contro

of, then it 1S P
neet the transient and steady-state specifications ol the closed-loop system. However, il the plant is

ossible 10 apply various design techniques for determining parameters ol the controller that
50
jcated that its mathematical model cannot be casily obtained, then an analytical or computational

P
ign of a PID controller is not possible. Then we must resort to experimental approaches 1o

aach to the des
aning of PID controllers.

process of selecting the controller parameters to meet given performance specifications is known as
. Ziegler and Nichols suggested rules for tuning P1D controllers (meaning (o scl values K. T,
p responses or based on the value of K, that results in marginal stability when
iegler—Nichols rules, which arc bricfly presented in the following, arc
can. of course. be applied to the design

roller tuning
T,) based on experimental ste
proportional control action is used. Z
11 when mathematical models of plants are not known. (These rules

stems with known mathematical

1 -
K,[“ Tt Tﬁ] 1 Plant -

lels.) Such rules suggest a set of values of Ky, T, and Ty that will give a stable operation of the system.

vever, the resulting system may exhibit a large maximum over-shoot in the step response, which is
cceptable. In such a case we need series of fine tunings until an acceptable result is obtained. In fact, the
oler-Nichols tuning rules give an educated guess for the parameter values and provide a starting point for
ttuning, rather than giving the final settings for K, T, and Ty in a single shot.

E@~Niclmls Rules for Tuning PID Controllers
tgler and Nichols pro-posed rules for determining values of the proportional gain K, integral time T, and
fvative time Ty based on the transient response characteristics of a given plant. Such determination ol the

?neters of P1 D controllers or tuning of P1D controllers can be made by engincers on-site by experiments o1




rs have been proposed since the Ziegler- ;.

the plant. (Numerous tuning rules for PID controlle 0% aob eoniraTIST holg
They are available in the literature and from the manufacturers 0%

; : v the first method and the sec
There are two methods called Ziegler-Nichols tuning rules: the lir - con el

give a brief presentation of these two methods.

First Method | . .

In the first method. we obtain experimentally the response of the pln‘nl to a umlflcp MpUL, as shoy,
If the plant involves neither integrator(s) nor dominant CUIII['llt.‘?\'-.t:()lf_ulg:ltc.p.‘()h:b.‘ then sueh E.l unit.su-p
curve may look S-shaped. as shown in Figure. This method nPP“.CS if the “”’P"f‘hc lo a step MUt ex
shaped curve. Such step-response curves may be gcncrillud L‘-\PC“'I“U"'“”Y or from a dynamic simulyg
plant.

The S-shaped curve may he characterized by two constants, delay time L f‘"d “".“" C”."S“"" I The ¢
a tangent line at the inflection point of the S-shape(

and time constant are determined by drawing . : )
time axis and line ¢(t) = K, as shown in f;

determining the intersections of the tangent line with the

transfer
— _TC,
e N P .
- em—

- —p—! Plant o=
u(r) (1)

Fig. Unit-step response of a plant

c(t) § . Tangent line at

inflection point
Wil R Plant

K /_

Fig. S—shaped response curve
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P r.NichO‘-“' Mining Rule Based on Step Response of Plant (First Meth
e . : rst Method)

pieler e
A I 7
i o 0
IJ
i 0.9 &, 0
S L =
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Jion C(s)U(s) may then be approximated by a first-order system with a transport lag as follows:
dg _

Cls) _Ke"

Uls) Ts+l

et and Nichols suggested to set the values of K, Ti, and Ty according to the formula shown in Table

¢ PID controller tuned by the first method of Ziegler-Nichols rules gives

GAQ:K{HR%+RJ

ice that th

T
= 1.2—(1 + L— + O.SLSJ
L 218

us, the P1D controller has a pole at the origin and double zeros at s = -1/L.

cond Method

the second method, we first set T, = = a
Kp from 0 to a critical value K at which the outp
ations for whatever value K may take,

ding period Per arc experimentally

nd Ty = a Using the proportional control action only (see Figure).

ut first exhibits sustained oscillations. (1f the output

rease
then this method does apply.) Thus. the

es not exhibit sustained oscill
itical eain K and the correspon
un) | 50]
K, »—{ Plant prm—

L

1

Fig. Closed = loop systemwitha proportional controller
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Figure : Sustained oscillation with period Pe (P is measured in sec )

determined (see Fipure). Zsegler and Nichols su

geested that we set the values of the Parameters
according to the formula shown in Table.

Table: Zicgler-Nichols Tuning Rule Based on Critical Gain K¢ and Critical Period P, (Secong Meth,

. 'Iyt_)c-oi_(’c_mtmﬁ;:rﬂ ? K, T, Ts
| P i 0.5 K. - 0
| Pl | 05K 1 p 0
t *I—_, &
o -
PID 0.6K., 05 P, 0.125 P,

Naotice that the PID controller tuned by the second method of Ziegler-Nichols rules gives

( 1 A
Gds) =K, 1+E+T£SJ

( .
= 06K {1+ T e O.IbPﬁsJ

-3)
=DOIS K P —— =™
s
Thus, the PID controller has a pole at the ori
Note that if the system has a known mathematical model

rout-locus method 1o find the critical gain K_, and the freq
P These values can be found

of the root-locus branches

gin and double zeros ar §=4/P,.

(such as the transfer function). then we &

. hors =
vency of the sustained oscillations o W/
from the crossing points of the root-locus bra

nches with the jo avis 147
4o not cross the jw, axis, this method does not appl

v.)




s g ST :
fﬂ{ﬂgchﬂls uning rules (and other tuning rules presented in the literature) have been widely used to tune

; control syste :
H*"L,r,,no""rs in process ystems where the plant dynamics arc not precisely known. Over many years

) / be very us AR Shes wge .
':,niﬂﬂ les proved 10 y usclul. Ziegler-Nichols tuning rules can, of course, be applied to plants
p e : '

! jypamics are known. (If the plant dynamics are known, many analytical and graphical approaches to the

e o-fPID controllers are available, in addition to Ziegler-Nichols tuning rules)
il .

P le I

Consider the control system shown in Figure in which a PID controller is used to control the system.
The PID controller has the transfer function

: , |
T GC(S)=|\,,[1+?5—+T[,SJ

Although many analytical methods are available for the design of a PID controller for the present
system, let us apply a Ziegler-Nichols tuning rule for the determination of the values of parameters Kp-
T, and Ty Then obtain a unit-step response curve and check to see if the designed system exhibits
approximately 259, maximum overshoot. If the maximum overshoot is excessive (40% or more). make a
fine tuning and reduce the amount of the maximum overshoot to approximately 25% or less.

Since the plant has an integrator, we use the second method of Ziegler—Nichols tuning rules. By setting
T, = o and Ty = 0. we obtain the closed-loop transfer function as follows:

Cls) K,

R(s) s(s+ ])(s +5)+ K,

The value of K, that makes the system marginally stable so that sustained oscillation occurs can be
obtained by use of Routh's stability criterion. Since the characteristic equation for the closed-loop
system is

53+632+55+Kp=0

the Routh array becomes as follows:

S 1 5
s’ 6 Kp
3 30- Kp

6
s’ Kp




CONTROL VALUE &
ELECTRIC ACTUATORS

jve is defined as any device by which the flow

of fluid may be st
fhat opens or obstructs passage.

arted, stopped, or regulated by a movable
;‘FI‘MS‘

+ Start and stop flow

+ Regulation of flow

+ Back flow prevention

+ Release pressure

he Capacity

-capacity or flowing rate of a control valve is given by

=g |8
C\._'Q.J;

re AP = pressure drop (psi) across the valve
G = liquid's specific gravity (1 for water)
Q = Flow rate in GPM

2 valve of C, is in US GPM

!G
InSlunitC, =11.7 —
n S1 uni Q AP

ere, Q = water flow (m3/hr)

AP = pressure drop (kP,)

g
inge ability :
the ratio of maximum controllable flow minimum controll

9"_.‘_" = (('; )II‘..I\

(‘)Flllﬂ {(‘\ ]

able flow, ie..

mn




