
Unit 5

RTOS
Real Time Operating System

Introduction

 Embedded system: used to perform a specific task and a combination of hardware and software.

It process the input and controls the output

 Real time embedded system: If it has time constraint. Single process under application

software

 Real time operating system:

Complex system and require to

manage the hardware resources.

Requirements on RTOS
 Operating System(OS) is a software that manages and handles hardware and software

resources of a computing device

 A real-time operating system (RTOS) is a specialized operating system that manages tasks with

strict time constraints.

 Deterministic system calls

 Responsiveness

 Fast process/thread switch

 Fast interrupt response

 Support for concurrency and real-time

 Multi-tasking

 Real-time

 synchronization

 Scheduling, many priority

Types of RTOS

 A hard real-time operating system is used when we need to
complete tasks by a given deadline. If the task is not
completed on time then the system is considered to be
failed.

 A soft real-time operating system is used where few delays
in time duration are acceptable. That is if the given task is
taking a few seconds more than the specified time then also
no critical damage takes place.

 A firm real-time operating system lies between the hard and
soft real-time operating system. A firm real-time system is
one in which a few missed deadlines will not lead to total
failure, but missing more than a few may lead to complete
or catastrophic system failure. However, unlike a hard real-
time task, even if a firm real-time task is not completed
within its deadline, the system doesn’t fail but the late
results are merely discarded.

 For example, in Video Conferencing

Architecture of RTOS

 The operating system acts as a bridge
between the user applications/tasks and
the underlying system resources through
a set of system functionalities and
services.

 The OS manages the system resources
and makes them available to the user
applications/tasks on a need basis.

 The primary functions of an operating
system is

• Make the system convenient to use

• Organize and manage the system
resources efficiently and correctly

File

management

Architecture of RTOS

 The Kernel: It is the core of the operating system and is responsible for

managing the system resources and the communication among the hardware and

other system services. Kernel acts as the abstraction layer between system

resources and user applications. Kernel contains a set of system libraries and

services.

 Task scheduling/Management: also called Process management, it deals with

managing the processes/tasks. It includes setting up the memory space for the

process, loading the process’s code into the memory space, allocating system

resources, scheduling and managing the execution of the process, Inter Process

Communication and synchronisation, process termination/ deletion, etc.

 Primary Memory Management: The term primary memory refers to the volatile

memory (RAM) where processes are loaded and variables and shared data

associated with each process are stored.

Architecture of RTOS

 The Memory Management Unit (MMU) of the kernel is responsible for- Keeping track

of which part of the memory area is currently used by which process and Allocating and

De-allocating memory space on a need basis (Dynamic memory allocation).

 File system management: The file operation is a useful service provided by the OS. The

file system management service of Kernel is responsible for

• The creation, deletion and alteration of files

• Creation, deletion and alteration of directories

• Saving of files in the secondary storage memory (e.g. Hard disk storage)

• Providing automatic allocation of file space based on the amount of free space available

• Providing a flexible naming convention for the files

Architecture of RTOS

I/O System (Device) Management

 Kernel is responsible for routing the I/O requests coming from different user applications to the
appropriate I/O devices of the system.

 the access to i/o is provided through a set of Application Programming Interfaces (APIs) exposed
by the kernel.

 The kernel maintains a list of all the I/O devices of the system. This list may be available in
advance, at the time of building the kernel. Some kernels, dynamically updates the list of
available devices as and when a new device is installed

 The service ‘Device Manager’ of the kernel is responsible for handling all I/O device related
operations. T

 he kernel talks to the I/O device through a set of low-level systems calls, which are
implemented in a service, called device drivers. The device drivers are specific to a device or a
class of devices.

 The Device Manager is responsible for Loading and unloading of device drivers and Exchanging
information and the system specific control signals to and from the device

Architecture of RTOS

 Secondary Storage Management: The secondary storage management deals with
managing the secondary storage memory devices, if any, connected to the system.

 Interrupt Handler: Kernel provides handler mechanism for all external/internal
interrupts generated by the system. M

 any operating systems offer a number of addon system components/services to
the kernel. Network communication, network management, user-interface
graphics, timer services (delays, timeouts, etc.), error handler, database
management, etc. are examples for such components/services.

 Kernel exposes the interface to the various kernel applications/services, hosted by
kernel, to the user applications through a set of standard Application
Programming Interfaces (APIs). User applications can avail these API calls to
access the various kernel application/services.

Architecture of RTOS

Kernel Space and User Space

 The applications/services are classified into two categories, namely: user

applications and kernel applications.

 The program code corresponding to the kernel applications/services are kept in a

contiguous area (OS dependent) of primary (working) memory and is protected

from the unauthorized access by user programs/applications. The memory space

at which the kernel code is located is known as ‘Kernel Space’.

 All user applications are loaded to a specific area of primary memory and this

memory area is referred as ‘User Space’. User space is the memory area where

user applications are loaded and executed. The partitioning of memory into kernel

and user space is purely Operating System dependent.

Components of RTOS

The Scheduler: Tells that in which order, the tasks can be executed

which is generally based on the priority.

Symmetric Multiprocessing (SMP): It is a number of multiple

different tasks that can be handled by the RTOS so that parallel

processing can be done.

Memory Management: This element is needed in the system to

allocate memory to every program

User-defined data objects and classes: RTOS system makes use of

programming languages like C or C++, which should be organized

according to their operation.

Fast dispatch latency: It is an interval between the termination of

the task that can be identified by the OS and the actual time taken

by the thread, which is in the ready queue, that has started

processing.

Function Library: It is an important element of RTOS that acts as

an interface that helps you to connect kernel and application code.

This application allows to send the requests to the Kernel using a

function library so that the application can give the desired results..

Services/Functions offered by RTOS

next

RTOS Scheduling

