
Unit 5

Scheduling in RTOS



Services/Functions offered by RTOS



Task management 

 The application is decomposed into small, schedulable, and sequential program units known as 

“Task”

 Execution and is governed by three time critical properties; 

 release time : Release time refers to the point in time from which the task can be executed

 Deadline: Deadline is the point in time by which

the task must complete

 execution time: Execution time denotes the time

the task takes to execute.

Task management is known as scheduling



Time stages/scheduling states

 Dormant : Task doesn’t require computer time 

 Ready: Task is ready to go active state, waiting 

processor time 

 Active: Task is running 

 Suspended/waiting: Task put on hold 

temporarily 

 Pending: Task waiting for resource.

During the execution of an application program, individual tasks are continuously changing from 

one state to another. However, only one task is in the running mode (i.e. given CPU control) at any 

point of the execution

Running to waiting-N

Running to termination- N

Running to ready – P

Waiting to ready - P



Scheduler:

 The scheduler keeps record of the state of each task and selects from among them that are 

ready to execute and allocates the CPU to one of them.

 Choosing the order of running processes is known as scheduling

 Scheduling Policy: Deals how processes are selected for promotion from ready state to running 

state



Scheduling methods/Policy

Polled

Interrupt driven

1) Simple scheduling- based on 

TDMA

H is hyper period

2) Round Robin scheduling

Each process is evaluated one 

after the other

Hyper period may be left 

empty if no task to perform



Scheduling Types

Can be classified 
as

Co operative 
scheduling

Pre emptive
scheduling



Scheduling strategies

Non Preemptive or Co operative multitasking Preemptive or Priority Multitasking

Currently running task voluntarily gives up 

executing to allow another task to run

Currently running task is interrupted and blocked 

to allow another task to run



Pre emptive

 Disadvantage: In non preemptive scheduling each ready task cooperates to let the running one 

finish.

A long execution time of low priority task waits at least until that finishes.

 In computing preemption is the act of temporarily interrupting a task being carried out by a 

computer system 

 with the intention of resuming the task at a later time. 

 Such a change is known as a context switch. It is normally carried out by a privileged task or 

part of the system known as a preemptive scheduler. 

 When a higher priority task needs to be executed, the RTOS must save all the information 

needed to eventually resume the task being suspended. Typically consists of most/all of the CPU 

registers



Preemptive



Preemptive

When the currently running task is interrupted to allow a higher priority task to 

run, is called

Priority based Preemptive scheduling



Non Preemptive



Common Scheduling Techniques

 Round Robin

Static scheduling algorithm

It may be non preemptive or preemptive

 Early deadline first (EDF) 

Dynamic scheduling algorithm. 

Will run the tasks which has the shortest time to its deadline. 

Generally preemptive. 

 Rate-Monotonic scheduling (RMS) 

Fixed priority.

Static priorities assign according to the cycle duration, that is, a 

short task duration gives a higher priority. 

Generally preemptive.



Round Robin scheduling (non preemptive)

 In RR scheduling, each process gets equal time slices (or time quantum) for which it executes in 

the CPU in turn wise manner. 

 When a process gets its turn, it executes for the assigned time slice and then relinquishes the 

CPU for the next process in queue.

 RR is a fair scheduling strategy where all processes get equal share to execute in turn wise 

manner.

 The performance of RR scheduling is vastly dependent on the chosen time quantum

 Through RR scheduling strategy, none of the processes go into starvation.

 It is widely used for its simple working principle



Round Robin algorithm

 New process that arrives in the system is inserted at the end of the ready queue in FCFS manner.

 The first process in the queue is removed and assigned to the CPU.

 If the required burst time is less than or equal to the time quantum, the process runs to 

completion. 

 The scheduler is invoked when the process completes executing to let in the next process in the 

ready queue to the CPU.

 If the required burst time is more than the time quantum, the process executes up to the 

allotted time quantum and added to the end of the queue. 

 Context switch occurs and the next process in the ready queue is assigned to the CPU.

 The above steps are repeated until there are no more processes in the ready queue



Example

Consider time 

quantum of 2ms

Evaluate average turnaround time



solution

Disadvantages of RR scheduling method:

1. The performance of Round Robin scheduling is highly dependent upon the chosen time quantum.

2. If the chosen time quantum is too small, the CPU will be very busy in context switching, i.e. swapping in 

swapping out processes to and from the CPU and memory. This would reduce the throughput of the system since 

more time will be expended in context switching rather than actual execution of the processes.

3. RR scheduling does not give any scope to assign priorities to processes. So, system processes which need high 

priority gets the same preference as background processes.



Round Robin- priority driven (preemptive scheduling)

Considering that a lower 

priority value means 

higher priority. Evaluate 

Average turn around time

• Highest priority task will be 

executed first.

• If the process has same priority 

the one that arrives first in the 

table will be allocated the 

recourses.



Priority inversion problem
 Scheduling the processes without considering the resources that the processes require, can 

cause priority inversion.

 In this a low-priority process blocks execution of a higher priority process by keeping hold of its 

resources. 

 Priority inversion problem occurs commonly in real time kernels.

 Example : Consider task 1 has a higher priority than task 2 and task 2 has a higher priority than 

task 3. Assume task 1 and task 3 share a resource through mutual exclusion. While task 3 is 

executing and holding the resource if task 2 is ready, it is scheduled because it has higher 

priority. At this time, even though task 1 has higher priority it cannot execute because the 

blocked task 3 is holding the shared resource. That is, a lower priority process is blocking a 

higher priority process. This is the priority inversion problem.



Solution to priority inversion 

 Assigning Task priorities 

 There are two major ways to assign priorities 

 Static priorities- The priorities of the task that do not change during execution are called as 

static priorities. Once the Priority of the task is assigned, its value is retained till the end or 

completion of task. 

Example: Rate Monotonic Scheduling (RMS)

 Dynamic priorities- The priorities of the task that are dynamically changing during the execution 

are called as dynamic priorities. These priorities will change at each and every instant of time 

based on the current scenario. 

 Example: Earliest Deadline First (EDF)



Rate Monotonic Scheduling (RMS)

 Example: For the processes shown in 
figure draw a Gantt chart to show the 
execution of RMS algorithm.

 Solution:

1) Check whether the process can be 
executed within deadline

∑Ui ≤ n (2^1/n -1)

Ui(CPU utilization) = Burst time / Period

Here, n = 4 (P1, P2, P3, P4)

2) To get the total execution time- evaluate 
the LCM of all the processes period

Here LCM of 10, 5, 30, 15 = 30

U1 = 2/10

U2 = 1/5

U3 = 5/10

U4 = 2/15

∑Ui = 0.7

n (2^1/n -1) = 0.756

Since 0.7 ≤ 0.756

We can apply RMS and it will 

not miss the deadline



Gantt chart

• Process with least period will have highest priority

here P2 > P1> P4> P3

• Process with same period will have priority order according to how they are listed in the table.

• Implementation- In time frame of 5, P2 will executed 1 time.

In time frame of 10, P1 will executed 2 time.

In time frame of 15, P4 will executed 2 time.

In time frame of 5, P3 will executed 3 time.



Earliest Deadline First (EDF)

P2



OVER


