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Unit – 3: Quantum Theory 
Quantum Theory : Planck’s radiation formula, Ultraviolet catastrophe, Compton’s effect, de Broglie’s 
concept of matter waves, Heisenberg’s uncertainty relations, Schrodinger’s wave equation, Physical 
interpretation of wave function, Particle in a one-dimensional potential well. 

Planck’s radiation Formula & Ultraviolet Catastrophe 

Blackbody Radiation 
At the end of 19th Century scientists believed that the laws of Physics (which were known 
at that time) are enough to explain all the events Occur in nature. It was felt that there are 
two kinds, one is particles which obey Newton’s laws of motion & Second is radiations, 
obey Maxwell's equations of electromagnetism. These laws at that time is known as 
Classical Physics. 

But few experiments like Blackbody Radiation, Photoelectric effect, Compton's effect etc, 
the experiments in which there was interaction between radiation a matter were not 
explained by Classical physics. In order to explain these effects new mechanics was 
required, called as Quantum mechanics. So blackbody radiation is one of the great effects 
that leads to modern physics. 

Blackbody  
Radiation that is incident on an object is partially absorbed and partially reflected. At 
thermodynamic equilibrium, the rate at which an object absorbs radiation is the same as 
the rate at which it emits it. Therefore, a good absorber of radiation (any object that 
absorbs radiation) is also a good emitter. A perfect absorber absorbs all electromagnetic 
radiation incident on it; such an object is called a blackbody. 

Blackbody Radiation  
Although the blackbody is an idealization, because no physical object absorbs 100% of 
incident radiation, we can construct a close realization of a blackbody in the form of a 
small hole in the wall of a sealed enclosure known as a cavity radiator, as shown in Figure 
1. The inside walls of a cavity radiator are rough and blackened so that any radiation that 
enters through a tiny hole in the cavity wall becomes trapped inside the cavity. At 
thermodynamic equilibrium (at temperature T), the cavity walls absorb exactly as much 
radiation as they emit. Furthermore, inside the cavity, the radiation entering the hole is 
balanced by the radiation leaving it. The emission spectrum of a blackbody can be 
obtained by analyzing the light radiating from the hole. Electromagnetic waves emitted 
by a blackbody are called blackbody radiation. 
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Figure 1. A schematic of a blackbody. At thermal equilibrium all radiation absorbed and also emitted. 

The Temperature & the body is kept fixed & this implies that the radiation is in thermal 
equilibrium, which mean the electromagnetic radiations emitted per second by the walls 
of Cavity is Same as the radiations absorbed. The energy density of the electromagnetic 
radiation remains Constant, as the system is in thermal equilibrium. Also, there's a hole 
in the Cavity which allows the radiation to Come out.  

Energy Density:  
At a Particular temperature T energy in the Cavity per unit volume is called energy 
density. It is denoted by u. 

Spectral Energy Density  
At a certain temperature the average energy density between wavelength 𝜆𝜆 and 𝜆𝜆 + d 𝜆𝜆 is 
given by uʎ d 𝜆𝜆 where uʎ is called spectral energy density. The relation between u and uʎ 

is given by 

𝑈𝑈 = � 𝑢𝑢𝜆𝜆𝑑𝑑𝜆𝜆
∞

0
(1) 

one can use uʋ, instead of uʎ, which is defined frequency range between ʋ and ʋ+dʋ . 

Emissive Power  
Total radiation energy emitted by unit surface area of the blackbody at a certain 
temperature is called Emissive Power of the blackbody.  

Spectral Emissive power 
Total radiated energy between 𝜆𝜆 and 𝜆𝜆 + d 𝜆𝜆  wavelength range emitted by unit surface 
area of blackbody at Certain temperature is given by 𝐸𝐸𝜆𝜆d 𝜆𝜆 where 𝐸𝐸𝜆𝜆  is called spectral 
emissive power of black body. It is clear from the definition that  

                                                         
𝐸𝐸 = ∫ 𝐸𝐸𝜆𝜆

∞
0 𝑑𝑑𝜆𝜆 (2) 

If we know 𝐸𝐸𝜆𝜆 at certain temperature, then 𝑢𝑢𝜆𝜆 can be found a 

𝑈𝑈 =
4
𝑐𝑐
𝐸𝐸𝜆𝜆 (3) 
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Where c is speed of light. 

Experimental study of Blackbody Radiation 
First attempt was made by Lummer & Pringsheim in 1899. They plotted some curves 
between 𝐸𝐸𝜆𝜆 and 𝜆𝜆 for various temperatures as shown below in fig. (1). These plots are 
known as spectral energy distribution curve of blackbody radiation. 

 

 
Figure 2:.The spectrum of black-body radiation with increasing temperature showing blue shift at high temperatures. 

Characteristics of Blackbody radiation. 
1. It is clear from the figure that the graph is continuous which means, at every 

temperature, radiation for all wavelengths emitted the spectral emissive power is 
different for different wavelengths. 

2. Spectral energy density 𝐸𝐸𝜆𝜆 for each 𝜆𝜆  increases with temperature. 
3. At a Particular temperature at first 𝐸𝐸𝜆𝜆 increases with 𝜆𝜆 but after reaching certain 

highest value it goes decreasing. The highest value is cloned by 𝐸𝐸𝜆𝜆𝜆𝜆 & wavelength 
at which  𝐸𝐸𝜆𝜆  is maximum is denoted by 𝜆𝜆m. 

4. Wien's Displacement Law – As we see from the graph 𝜆𝜆  m decreases with 
temperature, It was Wien who first mathematically discovered  

𝜆𝜆𝑚𝑚 ∝
1
𝑇𝑇

 

     
𝑜𝑜𝑜𝑜 𝜆𝜆𝑚𝑚 = 𝑏𝑏

𝑇𝑇
(4)                                       

where b is Wien's Constant value is b= 2.898 x10-3 meter-kelvin. The above law is known 
as Wien's displacement law. It Can be also expressed in terms of frequency as 
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𝑈𝑈𝑚𝑚 = 𝑐𝑐𝑐𝑐
𝑏𝑏

(5)

We also see that the peak of the graph Increases rapidly with temperature. It is found that 

𝐸𝐸𝜆𝜆𝜆𝜆 ∝ 𝑇𝑇−5 (6) 

5. Stephan’s Boltzmann’s Law- At a particular temperature the area under the curve 
is given by ∫ 𝐸𝐸𝜆𝜆

∞
0 d 𝜆𝜆, which is the is total emissive Power of blackbody. Hence the 

area of the curve represents total emissive power. It is found to be proportional to 
T4 i.e. 

𝐸𝐸 = 𝜎𝜎𝑇𝑇4 (7) 

where σ = Stephan’s constant having value σ = 5.67x10-8 watt/m2/K4. This law is known 
Stefan Boltzmann's law.  Many attempts were made to explain the blackbody radiation 
curve. Wien’s and Rayleigh Jeans distribution law were used to explain the spectral 
distribution of blackbody radiations, but neither of these laws were able to explain it 
completely. 

Wien's Distribution Law  
Wien used thermodynamics to show that the Spectral density between 𝜆𝜆  and 𝜆𝜆  + d  𝜆𝜆  
wavelength range is given by           

                                                  
𝐸𝐸𝐸𝐸 𝑑𝑑𝜆𝜆 = 𝐴𝐴

𝜆𝜆5
𝑓𝑓(𝜆𝜆𝜆𝜆)𝑑𝑑𝜆𝜆 (8) 

To find the form of function 𝑓𝑓(𝜆𝜆𝜆𝜆) , he compared blackbody distribution curve with 
Maxwellian energy distribution curve. After the Comparison he deduced  

𝑓𝑓(𝜆𝜆𝜆𝜆) = 𝑒𝑒−𝑎𝑎∕𝜆𝜆𝜆𝜆 

hence, he found  

                                  
𝐸𝐸𝐸𝐸 𝑑𝑑𝜆𝜆 = 𝐴𝐴

𝜆𝜆5
𝑒𝑒−𝑎𝑎 𝜆𝜆𝜆𝜆⁄ 𝑑𝑑𝜆𝜆 (9) 

Where A and a are constants, T is temperature in Kelvin. This equation (9) is known as 
Wien's distribution law. Wien's law works well only for shorter wavelengths. There are 
considerable deviations at longer wavelengths & high temperature. In equation 9, when 
temperature is infinite (T=∞), the energy density 𝐸𝐸𝜆𝜆 is finite. This is in contradiction to 
experimentally verified Stefan's law. This implies an error in the theoretical distribution 
law & indicates flaws in the theory. Wien Could neither explained the failure his relation 
nor supply a better one.  

Rayleigh Jeans Distribution Law 
In 1900 Rayleigh & Jeans used Maxwell Boltzmann statistics to derive anther distribution 
in order to explain blackbody radiation. According to Rayleigh, the radiation waves in 
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blackbody can be compared to the standing waves in the cubical cavity and hence he 
calculated number of modes in wavelength range 𝜆𝜆 and 𝜆𝜆 + d 𝜆𝜆  

𝑁𝑁𝑁𝑁 𝑑𝑑𝜆𝜆 =
8𝜋𝜋
𝜆𝜆4

(10) 

As Per the principle of equipartition of energy. assignment of an average energy of kT to 
each mode of vibration leads to an energy density 𝑈𝑈𝑈𝑈 d𝜆𝜆 for waves with wavelength range 
𝜆𝜆 and 𝜆𝜆 + d 𝜆𝜆 given by  

𝑈𝑈𝑈𝑈 𝑑𝑑𝜆𝜆 =
8𝜋𝜋𝜋𝜋𝜋𝜋
𝜆𝜆4

𝑑𝑑𝜆𝜆 (11) 

Above equation is known as Rayleigh Jeans formula blackbody radiation. It contains no 
new Constants. In Rayleigh Jeans formula the energy density 𝑈𝑈𝑈𝑈 in a given wavelength 
range d 𝜆𝜆  increases rapidly as 𝜆𝜆  decreases and approaches infinity for very short 
wavelengths, which is not true. Later on Paschen showed that Wien's formula agreed with 
the experimental curves for shorter wavelengths while Rayleigh formula agreed with 
longer wavelengths. As none these formulae could account the entire radiation curve, 
Paschen Suggested that the fundamental assumptions of classical theory were at fault.   

The Ultraviolet Catastrophe 

 
Figure 3 Classical thermodynamic principles Rayleigh-Jeans' formula and Wien's displacement law could not explain 
Blackbody ration at high temperatures called UV catastrophe. While Planck's theory provides perfect matching. 

From equation (11) we see that energy density decreases with 𝜆𝜆, which is correct only in 
the higher wavelength region. Hence Rayleigh Jeans distribution law holds only for larger 
𝜆𝜆 part. At small 𝜆𝜆 this law Rayleigh Jeans law fails. The most disturbing aspect of Rayleigh 
Jeans law is that the area under the curve is infinite, this area represents the total energy 
radiated by the black body. The Rayleigh Jeans law forecasts that a body at temperature 
let 500K will radiate energy at an infinite rate! 
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There is nothing about 500K the law predicts infinite total radiation for all blackbodies, 
even those with temperature 0.01K. This nonsensical result became known as the 
“ULTRAVIOLET CATASTROPHE” because the excess radiation is found at short 
wavelength in UV region. It signalled a fundamental flaw in Classical thermodynamics.  

As was the case with Wien distribution law. So, Wien as well as Rayleigh Jeans couldn’t 
improve the prediction. 

Failure of Classical Physics  
Thus, we have two theoretical relations equation (9) and (11) Produced by Wien and 
Rayleigh Jeans to explain the black body radiation.  The First equation is good at shorter 
wavelength but inadequate at longer, while the second one is poor in IR and ridiculous in 
UV. Thus, both the physicists could not produce Satisfactory explanation of blackbody 
radiation through classical thermodynamics. 

Need of new mechanics 
As the Classical Physics or the Classical laws were unable to solve the Blackbody 
Radiation curve completely, so in order to explain the interaction of radiation with matter 
a new mechanics was needed. In this Max Planck gave a new and brave idea to solve this 
Blackbody radiation puzzle through quantum mechanics, which is called as Quantum 
hypothesis or Planck’s quantum hypothesis. Plank in 1901 proposed a new revolutionary 
hypothesis also called as theory of quanta or photons.  

Planck's Hypothesis  
In order to explain the experimentally observed distribution of energy in the spectrum of 
blackbody, Planck suggested that the correct results can be obtained if the energy of 
oscillating electrons is taken discreet rather than continuous. He derived the radiation 
law using assumptions which are: 

(i) A cavity containing blackbody radiations also contains Simple harmonic 
oscillators of molecular dimensions which can Liberate with all possible 
frequencies. 

(ii) The frequency of radiation emitted by an oscillator is same as the frequency of 
its vibration. 

(iii) An oscillator cannot emit energy in continuous manner, it can emit energy in 
the multiples of small unit called as quantum (photon). If an oscillator is 
vibrating with frequency ʋ, it can only radiate in quanta of magnitude hʋ, i.e. 
oscillator can have only discreet energy values 

𝐸𝐸𝑛𝑛 = 𝑛𝑛ℎ𝜈𝜈 (12) 
Where n is an integer and h is Planck’s constant whose value is 6.62 x 10-34 Js. 

(iv) The Oscillators can emit or absorb radiation energy in packets of hʋ. This 
assumption is most revolutionary in character. It implies that the exchange 
energy between radiation and matter cannot take place continuously but are 
limited to discrete set of values like  
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   0, hʋ, 2hʋ, 3hʋ, 4hʋ,…………….nhʋ.                

Planck's Radiation law 
Average energy of Planck Oscillator  
Planck used Maxwell Boltzmann Statistics to calculate radiation energy. According to 
Planck at temperature T, the number of oscillators having energy nhʋ is  

                                                 Nn = A exp (−𝑛𝑛hʋ
𝑘𝑘𝑘𝑘

)                                                            -(13) 

where k is Boltzmann Constant, h is Planck’s Constant. The total energy of oscillator 
having energy n hʋ is 

                                                 En = n hʋ Nn                                                       -(14) 

Hence the total energy of all oscillators in blackbody  

                                                 En = Σ En = Σ nhʋ Nn                                              -(15) 

Total number of oscillations in the blackbody is 

N = Σ Νn 

    Average energy of Oscillator is  

                                                  < 𝐸𝐸 > = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

                                     -(16) 

< 𝐸𝐸 > = Σ nhʋ Nn
Σ Νn

   

=         Σ nhʋexp(−𝑛𝑛ℎʋ/𝑘𝑘𝑘𝑘) 
Σexp(−𝑛𝑛ℎʋ/𝑘𝑘𝑘𝑘)

                                              -(17) 

Let    x = hʋ/KT 

                                               < 𝐸𝐸 >   =          KT Σ n𝑥𝑥 exp(−𝑛𝑛𝑛𝑛) 
Σexp(−𝑛𝑛𝑛𝑛)

                                         -(18) 

=    < 𝐸𝐸 >  =    -x kT  𝑑𝑑/𝑑𝑑𝑑𝑑[Σexp(−𝑛𝑛𝑛𝑛) ]
Σexp(−𝑛𝑛𝑛𝑛)

 

But                                Σ  exp(−𝑛𝑛𝑛𝑛) = 
1

1−𝑒𝑒−𝑥𝑥
 

And                              𝑑𝑑/𝑑𝑑𝑑𝑑[Σ exp(−𝑛𝑛𝑛𝑛)]   = 
−𝑒𝑒−𝑥𝑥

(1−𝑒𝑒−𝑥𝑥)2
 

Therefore                          < 𝐸𝐸 >  = 
−𝑒𝑒−𝑥𝑥

(1−𝑒𝑒−𝑥𝑥)2
1

1−𝑒𝑒−𝑥𝑥
          

                                                                   < 𝐸𝐸 > =       𝑥𝑥 𝑘𝑘𝑘𝑘
(𝑒𝑒−𝑥𝑥−1)

                                                                               - (19) 
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Hence average energy of an oscillator is 

                                                    < 𝐸𝐸 > = ℎ𝜈𝜈

(𝑒𝑒
ℎ𝜐𝜐
𝑘𝑘𝑘𝑘−1)

                                                      - (20) 

    In terms of wavelength 

                                                   < 𝐸𝐸 > = ℎ𝑐𝑐/𝜆𝜆

(𝑒𝑒 𝜆𝜆
ℎ𝑐𝑐
𝑘𝑘𝑘𝑘−1)

                                                     - (21) 

Complete Distribution Law 
 According to Planck energy density between range is 𝜆𝜆 and 𝜆𝜆 + d 𝜆𝜆 is  

U𝜆𝜆 d𝜆𝜆 = N𝜆𝜆d𝜆𝜆 <E> 

Planck used the calculation made by Rayleigh Jeans for number of Oscillations. Hence 

𝑁𝑁𝑁𝑁 d𝜆𝜆 =  8𝜋𝜋
𝜆𝜆4

 d𝜆𝜆 

 Thus, in terms of wavelength    

U𝜆𝜆 d𝜆𝜆 = 8𝜋𝜋ℎ𝑐𝑐

𝜆𝜆5 (𝑒𝑒 𝜆𝜆
ℎ𝑐𝑐
𝑘𝑘𝑘𝑘−1)

 d𝜆𝜆                                                - (22) 

In terms of frequency              Uʋ dʋ =   
8𝜋𝜋ℎ𝜈𝜈3

𝑐𝑐3 exp( ℎ𝜈𝜈
𝐾𝐾𝐾𝐾    )−1

     dʋ                                                    - (23) 

The above equation is called as Planck's distribution law. 

Having Postulated quantization and derived a fine radiation law (it fitted the data 
spectacularly well and avoided UV catastrophe), it explained the problem of blackbody 
radiation with remarkable accuracy of wavelength. For Small wavelength it reduces to 
Wien's distribution law while in larger wavelength range it is similar to Rayleigh Jeans 
law. 

Explanation in small 𝝀𝝀 range or Wien’s law 
For hc/kT » 1 

                                exp (ℎ𝑐𝑐
𝑘𝑘𝑘𝑘

) » 1, here 1 can be neglected, so using this in Planck’s law 

                                                 U𝜆𝜆 d𝜆𝜆 =  8𝜋𝜋ℎ𝑐𝑐
𝜆𝜆5

 [ 1

𝑒𝑒( ℎ𝑐𝑐𝜆𝜆𝜆𝜆𝜆𝜆)
] d𝜆𝜆                                                         

   U𝜆𝜆 d𝜆𝜆 =  8𝜋𝜋ℎ𝑐𝑐
𝜆𝜆5

exp(− ℎ𝑐𝑐
𝜆𝜆𝜆𝜆𝜆𝜆

) d𝜆𝜆                                                     - (24) 

This equation is similar to Wien's distribution law which is correct for small wavelengths. 
Hence from Planck’s Radiation Law Wien's distribution law can be derived. 

Explanation in long wavelength region or Rayleigh Jean’s Law 
If    hc/kT « 𝝀𝝀  
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then,     exp ( hc/kT) = 1+ (hc/kT). Using this in Planck's law we get 

                                                                     U𝜆𝜆 d𝜆𝜆 =  8𝜋𝜋ℎ𝑐𝑐
𝜆𝜆5

  1

 ℎ𝑐𝑐𝜆𝜆𝜆𝜆𝜆𝜆 

 

i.e.                                                                   𝑈𝑈𝑈𝑈 d𝜆𝜆 =  8𝜋𝜋𝜋𝜋𝜋𝜋
𝜆𝜆4  d𝜆𝜆                                          - (25) 

which is Rayleigh Jeans distribution law. It can explain all the properties of blackbody 
radiation at large wavelengths. 

1. Classical physics could not explain the behavior of a black body radiation at very 
short wavelengths.  What was this problem called? 
(A) Ultraviolet Catastrophe  (B) Absorption failure 
(C) Wavelength decrease  (D) Photoelectric Effect 
(E) Radiation 
 

2. What did Max Planck propose to solve the black body radiation problem? 
(A). Light comes in packets of energy. (B) Light changes its speed in different 
media. 
(C). Radiation is made up of waves (D) Light has a continuous energy profile. 
(E) Objects do not radiate energy. 
 

3. The energy of a photon depends on its: 
(A) Frequency  (B) Speed (C) Temperature           (D) Pressure (E) 
Amplitude 
 

4. How does the energy of a photon change if the wavelength is doubled? 
(A) Is cut to one-half   (B) Quadruples   (C) Stays 
the same 
(D) Doubles                 (E) Is cut to one-fourth 
 

5. As the wavelength of the radiation decreases, the intensity of the black body 
radiations  
a) Increases 
b) Decreases 
c) First increases then decrease 
d) First decreases then increase   

6. The radiations emitted by hot bodies are called as ________________ 
a) X-rays 
b) Black-body radiation 
c) Gamma radiations 
d) Visible light 

7. An iron rod is heated. The colors at different temperatures are noted. Which of the 
following colors shows that the iron rod is at the lowest temperature? 
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a) Red 
b) Orange 
c) White 
d) Blue 

8. A black body is defined as a perfect absorber of radiations. It may or may not be a 
perfect emitter of radiations. 
a) True 
b) False 

9. From the figure, what’s the relation between T1, T2, and T3? 

 
a) T1 > T2 > T3 
b) T3 > T2 > T1 
c) T3 > T1 > T2 
d) T2 > T1 > T3               

10. Electromagnetic wave theory of light could not explain Black Body radiations. 
a) True 
b) False 

11. What is the relation between the Energies as shown in the figure? 

 
a) Er = 0 
b) Ea = 0 
c) Et = Ei 
d) Ei = Er 

  

https://www.sanfoundry.com/wp-content/uploads/2019/10/engineering-physics-questions-answers-black-body-radiation-q5.png
https://www.sanfoundry.com/wp-content/uploads/2019/10/engineering-physics-questions-answers-black-body-radiation-q10.png
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COMPTON EFFECT 
According to the quantum theory of light, photons behave like particles except for their 
lack of rest mass. How far can this analogy be carried? For instance, can we consider a 
collision between a photon and an electron as if both were billiard balls. 

 
Figure 4: (a) The scattering of a photon by an electron is called the Compton effect. Energy and momentum 
are conserved in such an event, and as a result the scattered photon has less energy (longer wavelength) than 
the incident photon. (b) Vector diagram of the momenta and their components of the incident and scattered 
photons and the scattered electron. 

Figure 5, shows such a collision: an x-ray photon strikes an electron and is scattered away 
from its original direction of motion while the electron receives an impulse and begins to 
move. We can think of the photon as losing an amount of energy in the collision that is the 
same as the kinetic energy KE gained by the electron, although actually separate photons 
are involved. If the initial photon has the frequency ν associated with it, the scattered 
photon has the lower frequency ν’. From the principle of conservation of energy, we may 
write 

Theory of Compton Effect 
Loss in photon energy  =  gain in electron energy  

ℎ𝜈𝜈 − ℎ𝜈𝜈′ = 𝐾𝐾.𝐸𝐸. (1)   

The momentum of a massless particle is related to its energy by the formula  

𝐸𝐸 = 𝑝𝑝𝑝𝑝 (2) 

Since the energy of a photon is ℎ𝜈𝜈, its momentum is 

𝑝𝑝 =
𝐸𝐸
𝑐𝑐

=
ℎ𝜈𝜈
𝑐𝑐

(3) 

Momentum, unlike energy, is a vector quantity that incorporates direction as well as 
magnitude, and in the collision momentum must be conserved in each of two mutually 
perpendicular directions. The directions we choose here are that of the original photon 
and one perpendicular to it in the plane containing the electron and the scattered photon. 
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The initial photon momentum is ℎ𝜈𝜈/𝑐𝑐, the scattered photon momentum is ℎ𝜈𝜈′/𝑐𝑐, and the 
initial and final electron momenta are respectively 0 and p. In the original photon 
direction (see  Figure 5(b)) 

Initial momentum  =  final momentum 

ℎ𝜈𝜈
𝑐𝑐

+ 0 =
ℎ𝜈𝜈′

𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 + 𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 (4) 

and perpendicular to this direction 

Initial momentum =  final momentum 

0 + 0 =
ℎ𝜈𝜈′

𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 + 𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 (5) 

The angle 𝜑𝜑 is that between the directions of the initial and scattered photons, and 𝜃𝜃 is 
that between the directions of the initial photon and the recoil electron. From Eqs.(1) – 
(5), we can find a formula that relates the wavelength difference between initial and 
scattered photons with the angle 𝜑𝜑 between their directions, both of which are readily 
measurable quantities (unlike the energy and momentum of the recoil electron). 

he first step is to multiply Eqs. (4) and (5) by c and rewrite them as 

𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 = ℎ𝜈𝜈 − ℎ𝜈𝜈′𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 

𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = ℎ𝜈𝜈′𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 

By squaring each of these equations and adding the new ones together, the angle 𝜃𝜃 is 
eliminated, leaving 

𝑝𝑝2𝑐𝑐2 = (ℎ𝜈𝜈)2 − 2(ℎ𝜈𝜈)(ℎ𝜈𝜈′)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(ℎ𝜈𝜈)(ℎ𝜈𝜈′) cos𝜑𝜑 + (ℎ𝜈𝜈′)2 (6) 

Next we equate the two expressions for the total energy of a particle 

𝐸𝐸 = 𝐾𝐾.𝐸𝐸. +𝑚𝑚𝑐𝑐2 (7) 

and  

𝐸𝐸 = �𝑚𝑚2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 (8) 

Hence 

 (𝐾𝐾.𝐸𝐸. +𝑚𝑚𝑐𝑐2)2  =  𝑚𝑚2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 

𝑝𝑝2𝑐𝑐2 = 𝐾𝐾.𝐸𝐸.2+ 2𝑚𝑚𝑐𝑐2𝐾𝐾.𝐸𝐸. 

Since, 𝐾𝐾.𝐸𝐸. = ℎ𝜈𝜈 − ℎ𝜈𝜈′, we have 

𝑝𝑝2𝑐𝑐2 = (ℎ𝜈𝜈)2 − 2(ℎ𝜈𝜈)(ℎ𝜈𝜈′)+(ℎ𝜈𝜈′)2 − 2𝑚𝑚𝑐𝑐2(ℎ𝜈𝜈 − ℎ𝜈𝜈′) (9) 

Substituting this value of p2c2 in Eq. (8), we finally obtain 
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2𝑚𝑚𝑐𝑐2(ℎ𝜈𝜈 − ℎ𝜈𝜈′) = 2(ℎ𝜈𝜈)(ℎ𝜈𝜈′)(1 − cos𝜑𝜑) (10) 

Dividing the above equation (10) by 2h2c2, we obtain 

𝑚𝑚𝑚𝑚
ℎ
�
𝜈𝜈
𝑐𝑐

 −
𝜈𝜈′
𝑐𝑐
� =

𝜈𝜈
𝑐𝑐
𝜈𝜈′
𝑐𝑐

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑚𝑚𝑚𝑚
ℎ �

1
𝜆𝜆

 −
1
𝜆𝜆′�

=
1
𝜆𝜆

1
𝜆𝜆′

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

Or it can be simplified as 

𝜆𝜆′ − 𝜆𝜆 = 𝜆𝜆𝑐𝑐(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (11) 

With 𝜆𝜆𝑐𝑐 = ℎ/𝑚𝑚𝑚𝑚 (= 2.426 pm), is called Compton wavelength.  

The Compton wavelength gives the scale of the wavelength change of the incident photon. 
From Eq. (11) we note that the greatest wavelength change possible corresponds to 
𝜑𝜑 = 180°, when the wavelength change will be twice the Compton wave-length 𝜆𝜆𝐶𝐶 . 
Because 𝜆𝜆𝐶𝐶 =2.426 pm for an electron, and even less for other particles owing to their 
larger rest masses, the maximum wavelength change in the Compton effect is 4.852 pm. 
Changes of this magnitude or less are readily observable only in X-rays: the shift in 
wavelength for visible light is less than 0.01 percent of the initial wavelength, whereas 
for X-rays of 𝜆𝜆 = 0.1 nm it is several percent. The Compton effect is the chief means by 
which X-rays lose energy when they pass through matter. 

Experimental Results 
The experimental demonstration of the Compton effect is straightforward. As in Figure 6, 
a beam of X-rays of a single, known wavelength is directed at a target, and the 
wavelengths of the scattered X-rays are determined at various angles 𝜑𝜑 . The results, 
shown in Figure 7, exhibit the wavelength shift predicted by Eq. (11), but at each angle 
the scattered X-rays also include many that have the initial wavelength. This is not hard 
to understand. In deriving Eq. (11) it was assumed that the scattering particle is able to 
move freely, which is reasonable since many of the electrons in matter are only loosely 
bound to their parent atoms. Other electrons, however, are very tightly bound and when 
struck by a photon, the entire atom recoils instead of the single electron. 

In this event the value of m to use in Eq. (11) is that of the entire atom, which is tens of 
thousands of times greater than that of an electron, and the resulting Compton shift is 
accordingly so small as to be undetectable. 

Significance 
The Compton effect is first successful confirmation for the particle nature of 
electromagnetic radiation. The em radiation when assumed as a quantum particle or 
photon, the results exactly matches with the theoretical expression given in eq (11). 
While this experiment could not be assumed using classical wave theory. Where a wave 
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does not have a momentum and does not interact with a particle like electrons. Hence, 
this experiment and its results provide a kick-start to field of quantum mechanics. 

 

Figure 5: A diagram of Experimental setup for Compton Effect 

 

 

Figure 6: Experimental confirmation of Compton scattering. The greater the 
scattering angle, the greater the wavelength in accordance with eq. (11) 

 

Solve the following: 
1. What is the frequency of an x-ray photon whose momentum is 1.1 x 10-23 kg m/s? 
2. How much energy must a photon have if it is to have the momentum of a 10-MeV 

proton? 



PH10006-PHYSICS Unit-3 Quantum Theory Compton Effect 
 

  
DEPT. APPLIED PHYSICS & OPTO, SGSITS, INDORE UNIT 3 -PAGE 15 

 

3. A monochromatic x-ray beam whose wavelength is 55.8 pm is scattered through 
46°. Find the wavelength of the scattered beam. 

4. A beam of x-rays is scattered by a target. At 45° from the beam direction the 
scattered x-rays have a wavelength of 2.2 pm. What is the wavelength of the x-rays 
in the direct beam? 

5. An x-ray photon whose initial frequency was 1.5 x 1019  Hz emerges from a 
collision with an electron with a frequency of 1.2 x 10199 Hz. How much kinetic 
energy was imparted to the electron? 

6. An x-ray photon of initial frequency 3.0 x 1019 Hz collides with an electron and is 
scattered through 90°. Find its new frequency. 

7. Find the energy of an x-ray photon which can impart a maximum energy of 50 keV 
to an electron. 

8. At what scattering angle will incident 100-keV x-rays leave a target with an energy 
of 90 keV? 

9. (a) Find the change in wavelength of 80-pm x-rays that are scattered 120° by a 
target. (b) Find the angle between the directions of the recoil electron and the 
incident photon. (c) Find the energy of the recoil electron. 

10. A photon of frequency ν is scattered by an electron initially at rest. Verify that the 

maximum kinetic energy of the recoil electron is 𝐾𝐾𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 2ℎ2𝜈𝜈2

𝑚𝑚𝑐𝑐2
�1 + 2ℎ𝜈𝜈

𝑚𝑚𝑐𝑐2
�. 

11. In a Compton-effect experiment in which the incident x-rays have a wavelength of 
10.0 pm, the scattered x-rays at a certain angle have a wavelength of 10.5 pm. Find 
the momentum (magnitude and direction) of the corresponding recoil electrons. 

12. A photon whose energy equals the rest energy of the electron undergoes a 
Compton collision with an electron. If the electron moves off at an angle of 40° 
with the original photon direction, what is the energy of the scattered photon?  

13. A photon of energy E is scattered by a particle of rest energy E0. Find the maximum 
kinetic energy of the recoiling particle in terms of E and E0. 

 

 



PH10006-PHYSICS Unit-3 Quantum Theory Wave duality and Uncertainty 
 

  
DEPT. APPLIED PHYSICS & OPTO, SGSITS, INDORE UNIT 3 -PAGE 16 

 

De Broglie Hypothesis 
de Broglie equation states that a matter can act as waves much like light and radiation 
which also behave as waves and particles (Plank’s quantum theory). The equation further 
explains that a beam of electrons can also be diffracted just like a beam of light. The 
hypothesis helps us to understand the idea of matte having a wavelength and sys that, if 
we look at every moving particle whether it is microscopic or macroscopic it will have a 
wavelength. In cases of macroscopic objects, the wave nature of matter can be detected 
or it is visible.  

The de Broglie equation is basically describes the wave nature of the electron. An 
electromagnetic radiation, exhibit dual nature of a particle (having a momentum) and 
wave (expressed in frequency, wavelength). Microscopic particle-like electrons also 
proved to possess this dual nature property. Louis de Broglie in his PhD thesis suggested 
that any moving particle, whether microscopic or macroscopic will be associated with a 
wave character. It was called ‘Matter Waves’. He further proposed a relation between the 
velocity and momentum of a particle with the wavelength if the particle had to behave as 
a wave. Particle and wave nature of matter, however, looked contradictory as it was 
not possible to prove the existence of both properties in any single experiment. This 
is because of the fact that every experiment is normally based on some principle and 
results related to the principle are only reflected in that experiment and not the 
other.  Nonetheless, both the properties are necessary to understand or describe the 
matter completely. Hence, particles and wave nature of matter are actually 
‘complimentary’ to each other. It is not necessary for both to be present at the same 
time though. The significance of de Broglie relation is that it is more useful to 
microscopic, fundamental particles like electron. Dual behavior of matter proposed by 
de Broglie led to the discovery of electron microscope often used for the highly 
magnified images of biological molecules and other types of material. 

Derivation of expression for de Broglie Wavelength 

Very low mass particles moving at speed less than that of light behaves like a particle and 
wave. De Broglie derived an expression relating the mass of such smaller particles and its 
wavelength. 

Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength (λ) or 
frequency (ν) such as E  = hν  = hc/λ, here ‘h’ is the Plank’s constant. Einstein related the 
energy of particle matter to its mass and velocity, as  E = mc2 

As the smaller particle exhibits dual nature, and energy being the same, de Broglie equated 
both these relations for the particle moving with velocity ‘v’ as, 

𝐄𝐄 =  
𝐡𝐡𝐡𝐡
𝛌𝛌

=  𝐦𝐦𝐯𝐯𝟐𝟐     𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓,
𝐡𝐡
𝛌𝛌

= 𝐦𝐦𝐦𝐦 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 (𝐩𝐩), 𝛌𝛌 =
𝐡𝐡
𝐩𝐩

 



PH10006-PHYSICS Unit-3 Quantum Theory Wave duality and Uncertainty 
 

  
DEPT. APPLIED PHYSICS & OPTO, SGSITS, INDORE UNIT 3 -PAGE 17 

 

This equation relating the momentum of a particle with its wavelength is de Broglie equation 
and the wavelength calculated using this relation is de Broglie wavelength.  

de Broglie Equation and Bohr’s Hypothesis of Atom 

Bohr postulated that angular momentum of an electron revolving around the nucleus as 
quantized. Hence, the angular momentum will only be an integral multiple of a constant value 
and suggested the following expression. Angular momentum of electron in orbit (mvr) is  

  mvr =
nh
2π

, here n =  1,2,3 … . .. 

Bohr did not give any reason for such a proposal. But, de Broglie equation gives a scientific 
validation for such an imaginative proposal. The electron wave in an orbit must be in phase 
and so, the circumference of an orbit must equal to the integral multiple of the wavelength i.e 
2πr = nλ. Substituting for wave length, in the de Broglie equation,   

2πr = n
h
p

 or 2πr = n
h

mv
 or mvr = n x

h
2π

 

Hence the angular momentum of electron (mvr) is an integral multiple of a constant (h/2π). 

Exercise 1: Does, de Broglie hypothesis has any relevance to 
macroscopic matter? 

de Broglie relation can be applied to both microscopic and macroscopic. Taking for example a 
macro sized 100Kg  car moving at a speed of 100m/s, will have a wavelength of λ = h/mv = 
6.63×10−30m while high energy γ-radiations have wavelength of only 10-12 m. Very small 
wavelength corresponds to high frequencies. Waves below certain wavelength or beyond 
certain frequencies undergo particle-antiparticle annihilation to create mass. So, wave nature 
or de Broglie wavelength is not observable in the macroscopic matter. 

Exercise 2. If the velocity of the electron in this microscope is 1.6 × 
106m/s, calculate de Broglie wavelength associated with this electron. 

de Broglie Wavelength of λ = h/mv =4.55Å 

Heisenberg’s uncertainty principle 
Heisenberg’s uncertainty principle is a key principle in quantum mechanics. In principle, 
it states that if we know everything about where a particle is located (the uncertainty 
of position is small), we know nothing about its momentum (the uncertainty of 
momentum is large), and vice versa. Versions of the uncertainty principle also exist for 
other quantities, such as energy and time. We discuss the momentum-position and 
energy-time uncertainty principles separately. 
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Momentum and Position 
To illustrate the momentum-position uncertainty principle, consider a free particle that 
moves along the x-direction. The particle moves with a constant velocity u and 
momentum p = mu. As we know that according to de Broglie’s relations, p=ℏk or E=ℏω 
and the one dimensional wave function for this particle is given by 

ψ(x,t)=A[cos(ω t−k x)−isin(ω t−k x)]=Ae−i(ω t−k x)=Ae−i ω tei k x        (26) 

Also, the probability density function ∣ψ(x,t)∣2=A2 is uniform and independent of time. 
The particle is equally likely to be found anywhere along the x-axis but has definite values 
of wavelength, wave number and therefore momentum. The uncertainty of position is 
infinite (completely uncertain about position) and the uncertainty of the momentum is 
zero (completely certain about momentum). This account of a free particle is consistent 
with Heisenberg’s uncertainty principle. 

 
Figure 7 Superposition of several plane waves of different wavelengths produces a relatively localized wave. 

Similar statements can be made of localized particles. In quantum theory, a localized 
particle is modeled by a linear superposition of free-particle (or plane-wave) states called 
a wave packet. An example of a wave packet is shown in figure (4). A wave packet contains 
many wavelengths and therefore by de Broglie’s relations many momentum. This particle 
also has many values of position, although the particle is confined mostly to the interval 
Δx. The particle can be better localized (Δx can be decreased) if more plane-wave states 
of different wavelengths or momenta are added together in the right way (Δp is 
increased). According to Heisenberg, these uncertainties obey the relation that “the 
product of the uncertainty in position (Δx ) of a particle and the uncertainty in its 
momentum (Δp) can never be less than one-half of the reduced Planck constant” 
mathematically  

Δx Δp ≥ ℏ/2             (27) 

This relation expresses Heisenberg’s uncertainty principle. It places limits on what we 
can know about a particle from simultaneous measurements of position and momentum. 
If Δx is large, Δp is small, and vice versa. The Heisenberg uncertainty principle states that it 
is impossible to know simultaneously the exact position and momentum of a particle. That 
is, the more exactly the position is determined, the less known the momentum, and vice 
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versa. Heisenberg wrote “Any use of the words ‘position’ and ‘velocity’ with accuracy 
exceeding that given by the uncertainty relation (equation 27) is just as 
meaningless as the use of words whose sense is not defined.” Note that the 
uncertainty principle has nothing to do with the precision of an experimental apparatus. 
Even for perfect measuring devices, these uncertainties would remain because they 
originate in the wave-like nature of matter. The precise value of the product ΔxΔp 
depends on the specific form of the wave function. Interestingly, the Gaussian function 
gives the minimum value of the uncertainty product which is Δx Δp=ℏ/2. 

Exercise 1: Determine the minimum uncertainties in the positions of the following 
objects if their speeds are known with a precision of 1.0×10−3 m/s: (a) an electron and (b) 
a bowling ball of mass 6.0 kg. 

Discussion: Given the uncertainty in speed Δu=1.0×10−3 m/s, we have to first determine 
the uncertainty in momentum Δp=m Δu and then invert equation (27) to find the 
uncertainty in position Δx=ℏ/(2Δp). 

Solution:  For electron: 

Δ𝑥𝑥 =
ℏ
2Δ𝑝𝑝

=  
ℏ

2𝑚𝑚Δ𝑢𝑢
= 5.8 𝑐𝑐𝑐𝑐 

For bowling ball: 

Δ𝑥𝑥 =
ℏ
2Δ𝑝𝑝

=  
ℏ

2𝑚𝑚Δ𝑢𝑢
= 8.8 × 10−33m 

Conclusion / Significance:  
It interesting to note that unlike the position uncertainty for electron, the position 
uncertainty for the bowling ball is immeasurably small. Planck’s constant is very small, 
so the limitations imposed by the uncertainty principle are not noticeable in macroscopic 
systems such as a bowling ball. 

Exercise 2: Estimation of the ground-state energy of a hydrogen atom using Heisenberg’s 
uncertainty principle. (Hint: According to early experiments, the size of a hydrogen atom 
is ≈ 1 Å.) 

Discussion:   
An electron bound to a hydrogen atom can be modeled by a particle bound to a one-
dimensional box of length L = 0.1nm. We know that the ground-state wave function of 
this system is a half wave. Which means, this is the largest wavelength that can “fit” in the 
box, so the wave function corresponds to the lowest energy state. We can take the average 
energy of a particle described by this function (E) as a good estimate of the ground state 
energy (E0). This average energy of a particle is related to its average of the momentum 
squared, which is related to its momentum uncertainty.  

https://openstax.org/books/university-physics-volume-3/pages/7-2-the-heisenberg-uncertainty-principle#fs-id1170901907603
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Solution:  
To solve this problem, we must be specific about what is meant by “uncertainty of 
position (Δx)” and “uncertainty of momentum (Δp)”. For this particular case Δx means the 
possible space traveled by the electron in ground state of an atom defiantly it cannot 
exceed the size of an atom (L) which is supposed to be ≈ 1 Å. Then according to 
uncertainty principle Δp can be estimated as ℏ/(2Δx). According to the theory of particle 
in a box the particle is assumed to be free particle i.e. the total energy of the particle is 
contributed by the kinetic energy only. Therefore the estimated ground state energy the 
H-atom is 

𝐸𝐸0 =
∆𝑝𝑝2

2𝑚𝑚
=

ℏ2

8𝑚𝑚∆𝑥𝑥2
=

ℏ2

8𝑚𝑚𝐿𝐿2
≅ 1 𝑒𝑒𝑒𝑒 (𝑖𝑖𝑖𝑖 𝐿𝐿 = 0.1 𝑛𝑛𝑛𝑛) 

 

Significance:  
Based on early estimates of the size of a hydrogen atom and the uncertainty principle, the 
predicted ground-state energy of a hydrogen atom is in the eV range. Later on ionization 
energy of an electron in the ground-state energy is 13.6 eV, so this prediction is roughly 
confirmed.  

Exercise 3: Prove that electrons cannot exist inside the nucleus. 

Solution:  

To prove it, let us assume that electrons exist in the nucleus. As the radius of the nucleus in 
approximately 10-14 m. If electron is to exist inside the nucleus, then uncertainty in the position 
of the electron is given by ∆x= 10-14 m.   

According to uncertainty principle, Δx Δp ≥ ℏ/2   thus Δp ≈ ℏ/2Δx = 1.05 x 10-20 kg m/ sec. If 
this is the uncertainty in the momentum of electron, then the momentum of electron should be 
at least of this order, that is p=1.05x10-20 kg m/sec. An electron having this much high 
momentum must have a velocity comparable to the velocity of light. Thus, its energy should 
be calculated by the following relativistic formula 

𝐄𝐄 =   (𝐦𝐦𝟎𝟎
𝟐𝟐 𝐜𝐜𝟒𝟒  +  𝐩𝐩𝟐𝟐𝐜𝐜𝟐𝟐)𝟏𝟏/𝟐𝟐  =  𝟑𝟑.𝟏𝟏𝟏𝟏 𝐱𝐱 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏𝐉𝐉 =  𝟏𝟏𝟏𝟏.𝟔𝟔 𝐱𝐱𝟏𝟏𝟏𝟏𝟔𝟔 𝐞𝐞𝐞𝐞 =  𝟏𝟏𝟏𝟏.𝟔𝟔 𝐌𝐌𝐌𝐌𝐌𝐌 

Therefore, if the electron exists in the nucleus, it should have an energy of the order of 19.6 
MeV. However, it is observed that beta-particles (electrons) ejected from the nucleus during 
beta decay have energies of approximately 3 Me V, which is quite different from the calculated 
value of 19.6 MeV. Second reason that electron can not exist inside the nucleus is that 
experimental results show that no electron or particle in the atom possess energy greater than 
4 MeV. Therefore, it is confirmed that electrons do not exist inside the nucleus. 
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Energy and Time 
Another kind of uncertainty principle concerns uncertainties in simultaneous 
measurements of the energy of a quantum state and its lifetime, and given as 

𝚫𝚫𝑬𝑬𝚫𝚫𝒕𝒕 ≥  ℏ
𝟐𝟐
         (28) 

where ΔE is the uncertainty in the energy measurement and Δt is the uncertainty in the 
lifetime measurement. The general meaning of the energy-time principle is that a 
quantum state that exists for only a short time cannot have a definite energy. The reason 
is that the frequency of a state is inversely proportional to time and the frequency 
connects with the energy of the state, so to measure the energy with good precision, the 
state must be observed for many cycles. To illustrate, consider the excited states of an 
atom. The finite lifetimes of these states can be deduced from the shapes of spectral lines 
observed in atomic emission spectra. Each time an excited state decays, the emitted 
energy is slightly different and, therefore, the emission line is characterized by a 
distribution of spectral frequencies (or wavelengths) of the emitted photons. As a result, 
all spectral lines are characterized by spectral widths. The average energy of the emitted 
photon corresponds to the theoretical energy of the excited state and gives the spectral 
location of the peak of the emission line. Short-lived states have broad spectral widths 
and long-lived states have narrow spectral widths. 

Exercise 4: An atom typically exists in an excited state for about Δt = 10−8s. Estimate the 
uncertainty Δ f in the frequency of emitted photons when an atom makes a transition from 
an excited state with the simultaneous emission of a photon with an average frequency 
of  f = 7.1 × 1014 Hz. Is the emitted radiation monochromatic? 

Discussion:  
We invert equation (28) to obtain the energy uncertainty ΔE ≈ ℏ/2Δt and combine it with 
the photon energy E=h f to obtain Δ f. To estimate whether or not the emission is 
monochromatic, evaluate Δf/f. 

Solution:  
The spread in photon energies is Δ E = hΔ f. Therefore, 

Δ𝐸𝐸 =
ℏ
2Δ𝑡𝑡

⇒ ℎΔ𝑓𝑓 ≈
ℏ
2Δ𝑡𝑡

⇒ Δ𝑓𝑓 ≈ 14𝜋𝜋Δ𝑡𝑡 = 14𝜋𝜋(10−8s) = 8.0 × 106Hz 

𝑁𝑁𝑁𝑁𝑁𝑁 
Δ𝑓𝑓
𝑓𝑓

=
8.0 × 106Hz

7.1 ×  1014 Hz
= 1.1 × 10−8 

Significance:  
Because the emitted photons have their frequencies within 1.1×10−6 percent of the 
average frequency, the emitted radiation can be considered monochromatic. 
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Corollary:  
This problem can also justify the non-availability of two level laser. In this problem if we 
calculate the uncertainty in energy only it is approximately 66 neV. The physical meaning 
of the calculated uncertainty means the maximum possible change in the state of electron 
during the transition from one energy level to other i.e. the energy difference between 
the two energy level is 66neV which is extremely small energy that could be overcome by 
the free electron with its own kinetic energy. Hence the two states are not separated while 
they are continuum (actually separated but very closely spaced to each other). Therefore, 
lasing action or the condition of population inversion is not possible between the two 
energy level only.  

Unsolved Problems 
Problem 1: A sodium atom makes a transition from the first excited state to the ground 
state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state 
is 1.6×10−8s, what is the uncertainty in energy of this excited state? What is the width of 
the corresponding spectral line? 

Problem2: (a) If the position of a chlorine ion in a membrane is measured to an accuracy 
of 5.00 μm, what is its minimum uncertainty in velocity, given its mass is 5.86 x 10−26 kg? 
(b) If the ion has this velocity, what is its kinetic energy in eV? (Compare this with typical 
molecular binding energies of about 5 eV.) 

Problem 3: An ultrafast laser has a central wavelength of 550 nm. What pulse duration would 
result in a spread of wavelengths that just covered the visible spectrum, 400 nm to 700 nm? 

Problem 4: A pion and a proton can briefly join together to form a delta particle. A 
measurement of the energy of the system shows a peak at 1236 MeV, corresponding to the rest 
energy of the delta particle, with an experimental spread of 120 MeV. What is the lifetime of 
the delta particle? 

Problem 5: Does the Heisenberg uncertainty principle only apply to quantum physics? When 
you flip a coin, the outcome is uncertain. Does this arise from quantum uncertainty? 

Problem 6: An electron and photon moving with speed ‘v’ and ‘c’, respectively have the 
same de Broglie wavelength. If the kinetic energy and momentum of an electron are Ee and 
Pe and that of a proton are Eph and Pph respectively, then show that ration Ee/Eph is c/2v. 

Problem 7: Is the wavelength of electron on different orbits, same or different? If 
different what is the ratio of the wavelength in first and 4th orbit? (ans. (1/4) 

Problem 8: Show that the circumference of the Bohr orbit for the hydrogen atom is an 
integral multiple of the de Broglie wavelength associated with the electron revolving 
around the orbit. (Hint. Start from Bohr Hypothesis i.e. mvr = h/2π, and use de Broglie 
concept to prove the result). 
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Physical interpretation of wavefunction 
 

What is a wavefunction and Physical significance? 
The wavefunction represented usually with the symbol 𝛹𝛹, does not have any physical 
significance, while |𝛹𝛹|2 = 𝛹𝛹∗𝛹𝛹, signifies the probability of finding the particle. The 𝛹𝛹 is a 
complex quantity, it may assume positive or negative values and is not a measurable 
quantity. While |𝛹𝛹|2 is a positive, real and measurable quantity.  

All the wavefunctions representing a particle are needed to satisfy the Normalization 
condition. If a particle exists in the universe, the volume integral of the probability of 
finding the particle over the universe must be equal to 1, which is represented by 

� |𝛹𝛹|2
+∞

−∞

𝑑𝑑𝑑𝑑 = 1. (1) 

If ∫ |𝛹𝛹|2+∞
−∞ 𝑑𝑑𝑑𝑑 = 0, means the particle does not exist. Also the value of the integral never 

becomes negative, complex or infinity.  

If the wavefunction satisfies the conditioned given in equation (1) , then the wavefunction 
is said to be normalised. 

Well behaved wavefunction 
In order to call a wavefunction,  well behaved, it needs to satisfy the following conditions 

1. 𝛹𝛹 must be continuous and single valued everywhere. 
2. The partial derivatives 𝜕𝜕𝜕𝜕 ∕ 𝜕𝜕𝜕𝜕 , 𝜕𝜕𝜕𝜕 ∕ 𝜕𝜕𝜕𝜕  and 𝜕𝜕𝜕𝜕 ∕ 𝜕𝜕𝜕𝜕  must be continuous and 

single valued everywhere. 
3. 𝛹𝛹 must be normalizable.  

In order to make ∫ |𝛹𝛹|2+∞
−∞ 𝑑𝑑𝑑𝑑 , the third condition further requires that the wavefunction 

𝛹𝛹 must go to zero when 𝑥𝑥 → ±∞, 𝑦𝑦 → ±∞ and 𝑧𝑧 → ±∞.  

Generally, the probability of finding the particle within a region 𝑥𝑥1 and 𝑥𝑥2 is 

𝑃𝑃𝑥𝑥1,𝑥𝑥2 = � |𝛹𝛹|2𝑑𝑑𝑑𝑑
𝑥𝑥2

𝑥𝑥1
. (2) 

Example:  Let  𝛹𝛹 = sin (2𝑥𝑥) for a free particle. The probability of finding the particle 
between x = 0.2 and x = 0.3 is 

𝑃𝑃0.2,0.3 = � |sin(2𝑥𝑥)|2𝑑𝑑𝑑𝑑
0.3

0.2
= 0.023. (3) 

Joseph Thomas Andrews

�
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Properties of a wave function 
All the wavefunction obey addition and subtraction rules like any other vector. If 𝛹𝛹1 and 
𝛹𝛹2 represent the solution to a quantum mechanical system, then 

𝛹𝛹 = 𝑎𝑎1𝛹𝛹1 + 𝑎𝑎2𝛹𝛹2 (4) 

is also a solution to that system. 𝑎𝑎1  and  𝑎𝑎2  are constants.  In other words the 
wavefunction obeys  the principle of superposition.  

In order to understand this, let us consider  and example involving smaller particles such 
as electrons. Let the electrons are allowed to pass through the slits. A single isolated 
electron may  pass through any one of the two slits.  The wavefunctions 𝛹𝛹1 and 𝛹𝛹2 of an 
electron provides the probability of finding the electron through the slits 1 and 2, 
respectively as shown in the figure below. 

 

 

 

 

 

 

 

In this case, the wavefunctions suggests the distribution of probable path of the electron 
to pass through each slit.  

Operator associated with quantities 
Measurable parameter Operator 

Position (x) x 
Linear Momentum (p) −𝑖𝑖ℏ𝜕𝜕 𝜕𝜕𝜕𝜕�  

Kinetic Energy (KE= 𝒑𝒑𝟐𝟐 ∕ 𝟐𝟐𝟐𝟐) 
−
ℏ2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2
 

Potential Energy (U(x)) U(x) 

Total Energy (E) 
𝑖𝑖ℏ 𝜕𝜕 𝜕𝜕𝜕𝜕�  

−
ℏ2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝑈𝑈(𝑥𝑥) 

Expectation Values 
The wavefunction is expected to contain all the information about the particle or system 
under measurement. However, the physical quantities can not be measured directly. The 
value of the measurable quantity is obtained from the expectation values.  The 
expectation value of a quantity G is obtained from the operator form of  𝐺𝐺� as 
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⟨𝐺𝐺⟩ = � 𝜓𝜓∗𝐺𝐺�𝜓𝜓𝑑𝑑𝑥𝑥
+∞

−∞

. (4)

−
ℏ2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2
 

For example in order to measure the position x, the G is replaced with x as ⟨𝑥𝑥⟩ =

∫ 𝑥𝑥|𝜓𝜓|2 𝑑𝑑𝑥𝑥+∞
−∞ , the energy expectation value is obtained from ⟨𝐸𝐸⟩ = 𝑖𝑖ℏ� 𝜓𝜓∗ 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜓𝜓 𝑑𝑑𝑥𝑥

+∞

−∞
 and 

the expectation value of momentum is found from ⟨𝑝𝑝⟩ = −𝑖𝑖ℏ� 𝜓𝜓∗ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓 𝑑𝑑𝑥𝑥

+∞

−∞
. 

Example: The wavefunction of a particle in a potential well of width L is defined as 𝜓𝜓 =

�2
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛

𝐿𝐿
, find the expectation value of position. 

The expectation value of position is defined as 

⟨𝑥𝑥⟩ = � 𝑥𝑥|𝜓𝜓|2 𝑑𝑑𝑥𝑥
+∞

−∞

=
2
𝐿𝐿
� 𝑥𝑥 sin2 �

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
� 𝑑𝑑𝑥𝑥

+∞

−∞

 

    = 2
𝐿𝐿
�𝑥𝑥

2

4
−

𝑥𝑥 sin�2𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿 �
4𝑛𝑛𝑛𝑛
𝐿𝐿

−
cos (2𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿 )

8(𝑛𝑛𝑛𝑛𝐿𝐿 )2
�
0

𝐿𝐿

 

    = 2
𝐿𝐿
𝐿𝐿2

4
= 𝐿𝐿

2
    

Since the box has the dimension of L,   the integration limit has been changed to 0 to L. 
Also the expectation value is found be equal to L/2, which means that the average position 
of the particle is  at the middle of the box.  It can be interpreted as the wavefunctions are 
symmetric in this case of a particle in a box. Hence the average position is at the middle 
of the box. 

Question:  Find the expectation values of ⟨𝐸𝐸⟩, ⟨𝑝𝑝⟩ and ⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⟩  in the above case.
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Schrödinger’s Wave Equations 

Introduction 
The Schrödinger equation, is proposed by an Austrian physicist Erwin Schrödinger in 
1925, describes the space- and time-dependence of quantum mechanical systems. It is of 
central importance to the theory of quantum mechanics, playing a role analogous to 
Newton's second law in classical mechanics. Hence, Schrödinger’s equation itself is a 
law.  

Schrödinger’s equation cannot be derived from other basic principles of 
physics; it is a basic principle in itself. 

What is an Eigen equation? 
An operator (say 𝑂𝑂�), when operated on a function (say 𝑓𝑓(𝑥𝑥)) yields some 𝜆𝜆𝑖𝑖 times the 
function 𝑓𝑓(𝑥𝑥), it is called an eigen function represented by 

𝑂𝑂�𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝑖𝑖𝑓𝑓(𝑥𝑥). (1) 

Here, 𝑂𝑂�  is called eigen operator, is called  𝑓𝑓(𝑥𝑥) eigen function, 𝜆𝜆𝑖𝑖 is called eigen value. 
Since the eigen function is reproduced, this equation is called as an eigen equation. For 
example let 𝑂𝑂� = 𝑑𝑑

𝑑𝑑𝑥𝑥
  and 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑥𝑥, using equation (1) we can find 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎) = 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎. 

This is not a eigen equation and 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 is not an eigen function of the operator 𝑂𝑂� . 
Let us consider a function 𝑓𝑓(𝑥𝑥) =  𝐴𝐴𝑒𝑒−𝑎𝑎𝑎𝑎 , when operated on the operator 𝑂𝑂� = 𝑑𝑑

𝑑𝑑𝑥𝑥
,

𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑖𝑖𝑖𝑖 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝐴𝐴𝑒𝑒−𝑎𝑎𝑎𝑎) = −𝑎𝑎𝑎𝑎𝑒𝑒−𝑎𝑎𝑎𝑎 

Or 

𝑂𝑂�𝑓𝑓(𝑥𝑥) = −𝑎𝑎 𝑓𝑓(𝑥𝑥). 

Accordingly, we can say that 𝑓𝑓(𝑥𝑥) =  𝐴𝐴𝑒𝑒−𝑎𝑎𝑎𝑎, is an eigen function of an operator 𝑂𝑂� , yielding 
an eigen value of -a.  

Schrödinger equation from basic principles 
In quantum mechanics the wave function 𝜓𝜓 corresponds to the wave variable y of wave 
motion in general. However, 𝜓𝜓 , unlike y, is not itself a measurable quantity and may 
therefore be complex. For this reason, we assume that 𝜓𝜓 for a particle moving freely in 
the +x direction is specified by 

Ψ = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) (2) 
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From the foundations of quantum mechanics such as de Broglie hypothesis, we shall 
write that  

𝐸𝐸 = ℎ𝜈𝜈 = ℏ𝜔𝜔  or  𝜔𝜔 =
𝐸𝐸
ℏ

(3) 

and  

𝜆𝜆 =
ℎ
𝑝𝑝

   𝑜𝑜𝑜𝑜   
2𝜋𝜋
𝜆𝜆

=
𝑝𝑝
ℏ

= 𝑘𝑘. (4) 

Using (3) and (4) in we rewrite the equation (2) as, 

Ψ = 𝐴𝐴𝑒𝑒−(𝑖𝑖/ℏ)(𝐸𝐸𝐸𝐸−𝑝𝑝𝑝𝑝). (5) 

The equation (5) representing the wavefunction of a free particle moving in +x direction 
with total energy E and momentum p. The first and second order differentiation of the eq. 
(5) with respect to x, gives 

𝜕𝜕
𝜕𝜕𝜕𝜕

Ψ =
𝑖𝑖𝑝𝑝
ℏ
Ψ   and  

𝜕𝜕2

𝜕𝜕𝑥𝑥2
Ψ = −

𝑝𝑝2

ℏ2
Ψ. (6) 

The differentiation of (5) with time provides 

𝜕𝜕
𝜕𝜕𝜕𝜕
Ψ = −𝑖𝑖

𝐸𝐸
ℏ
Ψ. (7) 

Equation (6) and (7) can be rewritten as 

𝑝𝑝2Ψ = −ℏ2
𝜕𝜕2Ψ
𝜕𝜕𝑥𝑥2

  and  𝐸𝐸Ψ = −
ℏ
𝑖𝑖
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

(8) 

Classically, the total energy (E) of a free particle is written as 

Total energy = kinetic energy + potential energy 

𝐸𝐸 =
1
2
𝑚𝑚𝑣𝑣2 + 𝑈𝑈 =

𝑝𝑝2

2𝑚𝑚
+ 𝑈𝑈. (9) 

1Multiplying equation (9) by a wavefunction from right hand side Ψ 

𝐸𝐸Ψ =
𝑝𝑝2

2𝑚𝑚
Ψ + 𝑈𝑈Ψ. (10) 

Substituting 𝐸𝐸Ψ  and 𝑝𝑝2Ψ from equation (8) in equation (10), 

𝑖𝑖ℏ
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= −
ℏ2

2𝑚𝑚
𝜕𝜕2Ψ
𝜕𝜕𝑥𝑥2

+ 𝑈𝑈Ψ. (11) 

 
1 This is a too simple assumption to obtain Schrödinger equation. For accurate and more acceptable method 
refer to books on quantum mechanics. 
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The equation (11) obtained above is known as one-dimensional time-dependent 
Schrödinger’s equation. The equation shall be written for three-dimensional system as 

𝑖𝑖ℏ
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= −
ℏ2

2𝑚𝑚
�
𝜕𝜕2Ψ
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2Ψ
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2Ψ
𝜕𝜕𝑧𝑧2

� + 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)Ψ. (12) 

The potential energy is a function of x, y, z and t. The value of potential energy U, if known 
could be used to solve the Schrödinger equation of a particle. The solution of Ψ could be 
used to predict the probability of finding the particle with respect  x, y, z and t. 

Time-independent or Steady state form  
When the potential energy U of a particle does not depend explicitly with time t, it the 
Schrödinger equation can be simplified by removing all time dependent functions. The 
one-dimensional free particle wavefunction is rewritten as 

Ψ = 𝐴𝐴𝑒𝑒−�
𝑖𝑖
ℏ�(𝐸𝐸𝐸𝐸−𝑝𝑝𝑝𝑝) =  𝐴𝐴𝑒𝑒−�

𝑖𝑖𝐸𝐸
ℏ �𝑡𝑡𝑒𝑒�

𝑖𝑖𝑝𝑝
ℏ �𝑥𝑥 = 𝜓𝜓𝑒𝑒−�

𝑖𝑖𝐸𝐸
ℏ �𝑡𝑡 (13) 

Here, 𝜓𝜓 = 𝐴𝐴𝑒𝑒�
𝑖𝑖𝑝𝑝
ℏ �𝑥𝑥 , is the time independent part of the wavefunction. Substituting the 

modified wavefunction (13) in the time-dependent Schrödinger equation (12),  

 

After simplification,  

𝐸𝐸𝐸𝐸 = −
ℏ2

2𝑚𝑚
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

+ 𝑈𝑈𝑈𝑈. 

Or 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

+
2𝑚𝑚
ℏ2

(𝐸𝐸 − 𝑈𝑈)𝜓𝜓 = 0. (14) 

The equation (14) written above is popularly known as time-independent Schrödinger 
equation or Steady-state form of Schrödinger equation. 

Questions: 
1. Obtain time-dependent Schrödinger equation for a free particle from basic 

principles. 
2. What is steady state form of Schrödinger equation? 
3. Derive 3-Dimensional form of Schrödinger equation. 

Solve the following 
1. The time independent Schrodinger 

equation is: (a) 
Ψ=Ψ








+∇− EV

m
h 2

2

2   
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(b)  
Ψ=Ψ∇− E

m
h 2

2

2  

(c) t
iV

m
h

∂
∂

=Ψ







+∇−

ψ


2
2

2  
   

(d)  
0)(

2
2

2

=Ψ







Ψ−+∇− VE

m
h

 
2. The  wave function associated with a 

material particle is: 
(a) Only finite      
(b) Only continuous 
(c) Only single valued    
(d) Finite, continuous and single 

valued. 
3. According to classical mechanics, 

which law(s) apply or applies to the 
behavior of macroscopic particles? 
(a) Newton's three laws 
(b) the differential wave equation 
(c) Dalton's law of multiple 

proportions 
(d) Kepler's Law 

4. Schrodinger's equation described the 
(a) procedure for splitting an atom 
(b) complement of the wave function 
(c) behavior of "matter" waves 
(d) motion of light 

5. The probability density is the 
(a) square root of the wave function 
(b) absolute value of the wave function 
(c) inverse of the wave function 
(d) absolute square of the wave 

function 
6. The 2Ψ represents: 

(a) probability density 
(b) charge density  
(c) energy density  
(d) intensity of wave 

7. For normalization of wave function Ψ
, the condition is: 
(a) ∫ =ΨΨ 1*dx  

(b) ∫ =ΨΨ 0*dx  

(c) ∫ ∞=ΨΨ dx*  

(d) none of these 
8. if ∫ =ΨΨ 1*dx , the function Ψ is: 

(a) real 
(b) normalized  
(c) time independent  
(d) time dependent 

9. If /2/2 iEtx eAe α−=Ψ is a normalized 
wave function, the value of A will be : 
(a) 1 
(b) 0 
(c) ( ) 4/1/ −απ  
(d) 2/α  

10. For Compton effect, the incident 
radiation must be in the : 
(a) Visible region 
(b) Infrared region 
(c) X-ray region 
(d) Ultraviolet region
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Particle in a One-Dimensional Potential Well 

By the end of this class, you will be able to:  

• Describe how to set up a boundary-value problem for the stationary Schrӧdinger 
equation 

• Explain why the energy of a quantum particle in a box is quantized 
• Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and 

the connection of these solutions with time-dependent quantum states. 
• Learn, how to adopt Schrӧdinger’s equation to a realistic problem involving small 

particles and micro-nano system. 

This problem is also known as “Particle in a Box”.  

The Problem 
The particle in a box   problem is the simplest problem to solve using Schrӧdinger’s 
equation.   

• The problem assumes a particle is confined between two walls. The wall in turn, means 
the potential energy, hence it is called potential wall. Again for simplicity one-
dimensional wall is assumed. 

• Also, it is considered that the particle shall move inside the box between the walls. 
Hence the probability of finding the particle (a) on the wall and (b) outside the walls  is 
zero. 

• If assume the walls are located at x = 0 and at x = L, then the 𝜓𝜓(0) = 0 and 𝜓𝜓(𝐿𝐿) = 0. 
These, conditions are known as boundary conditions for the 1-D potential well problem. 

Solution to the Particle in a box or Particle in 
a potential well problem 
As defined, the particle in a box problem assumes the potential 
energy of a particle inside the well is U(x) = 0 for 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 , 
everywhere else it is infinity.   A  particle colliding on such walls 
would not lose its kinetic energy, also it can’t penetrate through 
the walls.  

The  task is to find the wavefunction 𝜓𝜓 for the particle within the 
limit of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿. Outside the box  𝜓𝜓 = 0. Since the case does 
not require any time dependence, we will use the Schrodinger’s 
steady state equation 

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

+
2𝑚𝑚
ℏ2

(𝐸𝐸 − 𝑈𝑈)𝜓𝜓 = 0 (1) 

Since U(x) = 0 for 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, the equation (1) will be rewritten as 
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𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+
2𝑚𝑚
ℏ2

𝐸𝐸𝐸𝐸 = 0. (2) 

The equation (2) is second differential equation and the solution is 

𝜓𝜓(𝑥𝑥) = 𝐴𝐴 sin
√2𝑚𝑚𝑚𝑚
ℏ

𝑥𝑥 + 𝐵𝐵 cos
√2𝑚𝑚𝑚𝑚
ℏ

𝑥𝑥 . (3) 

  

A and B are two unknown constants. They may be found by applying the boundary 
conditions that at 𝑥𝑥 = 0, the wavefunction 𝜓𝜓(0) = 0. This implies that  

𝜓𝜓(0) = 𝐴𝐴 × 0 + 𝐵𝐵 × 1 = 0  

Or B = 0. 

The  second boundary condition at 𝑥𝑥 = 𝐿𝐿, the wavefunction 𝜓𝜓(𝐿𝐿) = 0, implies that 

 

𝜓𝜓(𝐿𝐿) = 𝐴𝐴 sin�
√2𝑚𝑚𝑚𝑚
ℏ

𝐿𝐿� = 0. 

Since A can not be equal to zero, we are left with sin(√2𝑚𝑚𝑚𝑚
ℏ

𝐿𝐿)=0, or 

  √2𝑚𝑚𝑚𝑚
ℏ

𝐿𝐿 = 𝑛𝑛𝑛𝑛. 

⇒ 𝐸𝐸𝑛𝑛 =
𝑛𝑛2𝜋𝜋2ℏ2

2𝑚𝑚𝐿𝐿2
. (4) 

Here n = 1, 2, 3, …. . The equation (4) obtained for the particle energy E suggests that, the 
energy may have n number of quantised energy values represented as 𝐸𝐸𝑛𝑛. These energy 
values are called energy eigen values of the particle in a 1-D potential well.  

The results obtained above are used to rewrite the equation (2) as 

𝜓𝜓𝑛𝑛(𝑥𝑥) = 𝐴𝐴 sin�
�2𝑚𝑚𝐸𝐸𝑛𝑛

ℏ
𝑥𝑥� =  𝐴𝐴 sin �

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
� . (5) 

𝜓𝜓𝑛𝑛 will be now called as eigen function of the particle in 1D potential well. Further in 
equation only unknown is “A”. In order to find the unknown constant A, we use the 
property of a well behaved wavefunction, that every eigen function must satisfy the 
property called “Normalization”. 

Accordingly, ∫ |𝜓𝜓𝑛𝑛(𝑥𝑥)|2+∞
−∞ 𝑑𝑑𝑑𝑑 = 1. However, the limits may be restricted to 0 and L,  

��𝐴𝐴 sin �
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
��
2

𝐿𝐿

0

𝑑𝑑𝑑𝑑 = 1. (6) 
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We will use the identity that sin2(𝜃𝜃) = 1
2

(1 − cos 2𝜃𝜃), in equation (6)  

𝐴𝐴2

2 ��𝑑𝑑𝑑𝑑
𝐿𝐿

0

− � cos �
2𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿 �

𝐿𝐿

0

𝑑𝑑𝑑𝑑� = 1 

𝐴𝐴2

2
�𝑥𝑥 −

𝐿𝐿
2𝑛𝑛𝑛𝑛

sin �
2𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿 ��

0

𝐿𝐿

=
𝐴𝐴2

2
𝐿𝐿 = 1 

Or 𝐴𝐴 = �2
𝐿𝐿
.  The normalised wave function of the particle is  

𝜓𝜓𝑛𝑛(𝑥𝑥) =  �
2
𝐿𝐿

sin �
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
� .           𝑛𝑛 = 1, 2, 3, … (7) 

Understanding the wavefunction 
The normalised wavefunction  obtained in equation (7) are 
plotted for n = 1, 2 and 3.  As expected from the boundary 
conditions the wavefunctions becomes zero in both extreme 
limits of x = 0 and x = L. For n = 2, 3  more zeros occur as well 
the values becomes negative. Since,  𝜓𝜓𝑛𝑛  is the probability 
amplitude, it may have negative as well as imaginary values. 
The number of zero crossing occurs for n+1 times. The 

maximum amplitude the wave function can have is �2
𝐿𝐿
. 

The probability finding the particle |𝜓𝜓𝑛𝑛(𝑥𝑥)|2 for n = 1, 2 and 
3 are plotted.  All the probabilities are showing positive 
values only.  The maximum value of the probability is 2/L. For n = 1, the maximum 

probability of finding the particle lies at x = L/2, which is the 
center of the box. For n = 2, the maximum probability is found 
at two locations possible at L/4 and at 3L/4.   

 

Further, the particle with quantised wavefunction  𝜓𝜓𝑛𝑛  as 
defined in equation (7) will have a quantised energy of  𝐸𝐸𝑛𝑛 as 
defined in equation (4). This could be correlated with a string 
experiment, when more energy applied more loops are formed 
in the string. While for low applied energy the string shows less 
number of loops.  
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Questions 
1. Find the probability that a particle trapped in a box L wide can be found between 

0.25L and 0.35L for the ground and first excited states. 
2. Find the expectation values of position, momentum and kinetic energy of a particle 

trapped in a box L wide. 
3. The expectation value ⟨𝑥𝑥⟩ of a particle trapped in a box L wide is L/2, which means 

that its average position is the middle of the box. Find the expectation value ⟨𝑥𝑥2⟩.  
4. Find the probability that a particle in a box L wide can be found between x = 0 and 

x = L/n when it is in the nth state. 
5. A particle is in a cubic box with infinitely hard walls whose edges are L long. The wave 

functions of the particle are given by  
𝜓𝜓 = 𝐴𝐴 sin 𝑛𝑛𝑥𝑥𝜋𝜋𝜋𝜋

𝐿𝐿
sin 𝑛𝑛𝑦𝑦𝜋𝜋𝜋𝜋

𝐿𝐿
sin 𝑛𝑛𝑧𝑧𝜋𝜋𝜋𝜋

𝐿𝐿
, 

with nx, ny, nz = 1, 2, 3, …. . Find the normalization constant A.  
Hint: Solve  ∫ ∫ ∫ |𝜓𝜓|2𝐿𝐿

0
𝐿𝐿
0

𝐿𝐿
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1.
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